
m
m

A Complete, FlexCble
Compiler Construction

System

Robert W. Gray

Vincent I! Henring

Steven I! Levi

Anthony M. Sloane

William 111. Waite

ver the past five years, our group
has developed the Eli’ system to
reduce the cost of producing
compilers. Eli has been used to
construct complete compilers
for standard programming

languages extensions to standard programming languages, and special-
purpose languages. For the remainder of this article, we will use the term
compiler when referring to language processors.

One of the most important ways to enhance productivity in software engi-
neering is to provide more appropriate descriptions of problems and their
solutions. TheElisystemreducesthe
cost of producing a compiler in
exactly this manner. Compiler con-
struction is one of the most widely
studied applications in computer sci-
ence. As such, many cnmmon sub-
problems of this application have
been identified and standard solu-
tions devised. With the decomposi-
tion ofthe compilation problem into
anumberofsmallersubproblems, it

becomespossibletosolveeachofthe
small problems by using declarative
speciticationsinsteadofwritingalgo-
rithmic code. The use of specifica-
tions permits the description of the
natureoftheproblemratherthan the
nature ofthe solution; the nature of
thesolutionisembodiedinatoolthat
translates the specifications into
code.

Unfortunately, veryfewcompiler
construction tools are in common
use. Two of the mat popular are
LEX [ll], a scanner generator that

acceptsregularexpressionsandpro-
duces a table-driven recognizer, and
Yacc [El, an LALR(l) parser gener-
ator. Bothofthese toolsareusedprin-
cipally for phototyping and for the
generation of special-purpose proc-
essors, but are viewed by many as
king too slow [ill or not providing
adequate error recovery [E] to he
used in a production environment.
There are a numberofadditionlbar-
riers to increased tool use:
l Asteeplearningcurveisassociated
with the large number of different

121

conventions and options needed to
control each tool.
l Most tools were developed inde-
pendently of one another, and do
not work smoothly together.
. Many tools produce code whose
performance is far below that of a
hand-coded solution to the same
problem.

The Eli system was created to
overcome these barriers. A simple
compiler model provides a specific
set of subproblems to be solved by
the designer. Solutions are de-
scribed in the form of specifications
that may be created specially, or
extracted from a library, and the
actual compiler construction is
managed by an expert system that
hides the details of tool use. Eli
smooths the interaction between

E”COOlW

independently developed tools in needed to prepare the output of
three ways: it removes redundancy one tool for input to another, and it
from the specifications, it hides all greatly simplifies user requests for
of the processing that might be products. Finally, Eli is an open sys-

type mteger and real. Assignmelrt IS
a” operator, and there are Boolean
expressions (but no Boolean vari-
ables), if-clauses and while-loops.
The context-free grammar for
Minilax is shown in Figure 1.

Controlling the Tools. A complete
description of a Minilax compiler
consists of several files, each con-
taining a specification or part of a
specification. Some of these tiles
may be take” from a library, others
may be shared among several dif-
ferent projects. A user must be able
to submit this collection of tiles to
Eli, and to select properties of the
compiler being described. It may
only be necessary to test some as-
pect of the compiler. On the other
hand, it might be necessary to ob-
tain a” executable version of the
compiler, or a directory of source
tiles from which a” executable ver-
sion could be built without the “se
of Eli.

Most requests will involve a be
wildering array of tools and inter-
mediate products. Some of these
products may already have bee”
constructed to satisfy previous re-
quests. Eli removes the burden of
managing this complexity from the
user by placing it on the shoulders
of a” expert system called Odin [Z]
whose area of expertise is the man-
agement of complex user requests
[5]. Eli’s component tools and their
relationships are described by a
derivation graph that resides in
Odin’s knowledge base. Odin also
manages a cache of derived objects.
When a user makes a request of Eli,
Odin’s inference engine determines
the sequence of operations needed
to satisfy that request, reusing
cached objects in the derivation
wherever possible.

Eli’s primary input is a text file
whose name is the name of the
compiler being generated, followed
by the extension ‘specs’. (Each file
name has a” extension that names
the lrpe of that tile. File types are
used by the expert system to deter-
mine how the file should be pro-
cessed. Thus the extension ‘.oil’
indicates that the compiler for the

123

tern as it is easy to add tools or to
replace existing tools with new ver-
sions that create higher-perfor-
mance compilers.

The ELI System
Eli is a collection of off-the-shelf
tools controlled by an expert system
whose problem domain is the man-
agement of complex user requests
[ZO]. This str”ct”re allows us to at-
tack all three of the barriers to tool
“se we have mentioned.

Since the expert system manages
the construction process, we can
interpose arbitrarily complex pro-
cessing to make simple user input
acceptable to off-the-shelf tools.
The number of specifications can
be reduced, and special-purpose
languages can be used to simplify
those specifications. Values for
many of the tool parameters can be
deduced from the specifications
themselves.

The Eli system carries o”t arbi-
trary processing to match the o”t-
put of one tool to the input of an-
other, to prepare consistent input
for several tools from a single speci-
fication, and to combine outputs
from several tools. Thus, tools de-
veloped by different people with
different conventions can be com-
bined into a” integrated system,
eve” when only executable versions
of those prxessors are available.

To add a new tool to Eli, or to
replace a” existing tool with a bet-
ter one, only the expert system’s
knowledge base must be changed.
Eli users are not concerned with the
knowledge base; they are only in-
terested in the products and pa-
rameters that Eli provides. Knowl-
edge base changes may add new
products and parameters or make
existing ones disappear, but most
users can continue business as
usual.

InteractIng wlth Eli
The steep learning curve associated
with compiler construction tools is
the most significant barrier to their
widespread “se. To overcome this
barrier Eli embodies a decomposi-
tion of the total problem into a set

of well-deftned subproblems, pro-
vides libraries and special-purpose
languages for solving those sub-
problems, and automatically com-
bines the solutions into a working
compiler.

A rather stable overall design for
a compiler has evolved from expe-
rience over the last 20 years. As
summarized in Table 1, this design
decomposes the problem of compil-
ing a program into subproblems.
The structuring task analyzes the
phrase str”ct”re of the source pro-
gram, determining the semantically
significant components. Conceptu-
ally, the structuring task builds a
tree according to the abstract syn-
tax of the source language. The
translation task uses contextual in-
formation to verify that the sowce
program is consistent and derives
a” equivalent tree, whose structure
is determined by the abstract syntax
of the target language. Finally, the
encoding task allocates target ma-
chine resources to the target pro-
gram and maps the target tree into
the appropriate machine instruc-
tion sequence.

Eli generates a compiler from
specifications of the str”ct”res of
the four objects postulated by this
model (source program text, source
program tree, target program tree
and machine instruction set) and
the relationships between them.
Effectively, the designer defines a
particular instance of the general
compilation problem by providing
these specifications. Some of the
tools check the specifications for
consistency, some extract informa-
tion relevant to the specific sub-
problems listed in the third column
of Table 1, and others generate
code to solve those subproblems.
Finally, the generated modules are
combined with standard modules
from Eli’s library to obtain a com-
plete compiler that solves the prob-
lem specified by the designer.

To make the discussion concrete,
this article bases its examples on a
simple language called Minilax
[19]. Minilax is a conventional
block-structured, expression-
oriented language with variables of

?iinwwde “*t*ct”re.speaa”. spcifications for the wnm”dng task

ff include “translate. speos” Anribrc grammarforthe uanslslim task
en”ir0nment.li.b Use Ihe standard name analysis module
c+de”t.oil Spedfication for the type aulysin module
Properties.ddl Specification for the definition table module
#includs -vax.Spclr” Specification forthe encoding lark

(a) The content of file Mini~axspecs, a specification file

Check whether the concrete syntax satisfies the parser generator constraints:
Mi”ilax.specs :pars.&1e

Obtain B version of tio Mtilax compiler wilh embedded profiling code:
Mi”ilax.specs rprof :exe > Mi”ilax_prof.exe <

(b) Some typical El1 requests Involving the specification tile of (a)

Operator Identification Language
should be applied to that tile. Eli
passes the specification file through
the C preprocessor, and then inter-
prets each line as the name of a
specification file. The use of the C
preprocessor allows the user to
group specification file names logi-
cally, control the selection of certain
specifications by directives, and in-
clude specifications from libraries.

Figure 2 shows the top-level
specification file for the Minilax
compiler, and some Eli requests
that might be made during com-
piler development. The specifica-
tion files Structura8pec8, tram+
lataspecs and vaxspece list the
specifications for the three major
compilation subtasks given in Table
I. We will consider st.ructure.~pecs
in the section on tool interaction,
trea81ata8pec8 will be given in
Figure 4.1, and vax.8~~~8 are ex-
tracted from Eli’s library. A stan-
dard module for carrying out the
name analysis task, shown in Table
I is also available in Eli’s library,
and this module’s interface is made
available via environment.
lib. This interface is not a set of
specifications, and therefore its
name does not have the extension
.8pecs. Opident.ofl and Pivper-
tiesddl are all specifications, and
are discussed in the section on sub-
problem specifications.

Figure 2b shows examples of
some user requests of the Eli sys-
tem. Each request line in the figure
is read from left to right. A colon (:)
can be read as “derive to”; a plus
sign (+) introduces a keyword pa-
rameter, which may or may not
have an associated value. Notice
that it is possible to derive an object
from a derived object - %x+’ is a
general derivation that obtains
error reports produced by some
other derivation. A greater than
symbol (>) is a redirection mecha-
nism. It is used to place the object

resulting from the derivation into a
tile or a directory.

Notice that individual tools are
never invoked directly when using
Eli, and their particular interfacing
requirements are invisible. The
user is concerned only with com-
posing the appropriate request.
Based on that request, and the state
of the cache, Eli determines what
needs to be done, that is, what tools
to invoke, and what intermediate
results to produce. In order to
make requests of Eli, a person must
learn only a few derivation and pa-
rameter names. By hiding all the
conventions and most of the op-
tions needed to control each tool,
Eli sharply reduces the number of
items that must be learned.

The following will illustrate how
subproblem solutions are specified
to Eli and how the resulting mod-
ules are combined to produce a
complete compiler.

Subproblem Specifications. One of
the difficulties in learning to use
conventional compiler construction
tools is learning how to specify the
solutions to the subproblems (as
listed in Table 1) in the notation of
those tools. Eli attacks this problem
by providing specialized languages
that are tailored to specific sub-
problems. If one understands the
subproblem, the specification lan-
guage is quite obvious.

One of these special-purpose
languages, OIL, is used to solve the
operator identification problem
common to compiler construction.
Our purpose in showing this exam-
ple is to illustrate both how special-
ized notations match the designer’s
understanding of the subproblem,
and how the designer can describe
an instance of the problem rather
than a solution method.

The operator identification
problem is easily stated: most typed
languages permit the overloading of
operators, so that a given operator
may have operands of several types.
It is the responsibility of the com-
piler to detect valid operatorloper-
and combinations and to generate
the correct code to implement the

operation. ‘l’he compiler may also
have to generate code to coerce
operands of one type to another.
We use the term o@rator ind~cahon
to make explicit that the same oper-
ator may be used to indicate several
kinds of operations. In Minilax the
operator indication “+” may indi-
cate integer addition or real addi-
tion. The language also permits
operations such as,

IntegerValue + RealValue

for which the compiler needs to
generate a coercion operation to
coerce the integer value to a real
value prior to performing real ad-
dition.

The first section of Figure 3 IisIs
the operations that are available in
Minilax, specifying the signature
for each. Thus, Minilax provides
the usual arithmetic operations on
both integer and real values, and
the compiler writer has chosen to
name these operations iAdd (integer
addition), rAdd (real addition), and
so forth. The “+” is an overloaded
operator that could mean either
integer or real addition, as indi-
cated in the section entitled “Identi-
fication.” If an integer value is
given in a context where a real
value is required, then the compiler
is allowed to use thefloat operation
to convert that value from integer
to real because an appropriate co-
ercion has been specified, as shown
in the section entitled “Coercions.”
Minilax is a typed language. Types
in a language are distinct entities
that are related to other types by a
lattice [7]. Figure 3 describes this
type lattice, and the operator iden-
tification based on it. (The relation-
ship on which the lattice is based is
the partial order is coercible to.)

Figure 3 is the input specification
to OIL. OIL allows the language
designer to specify the operator
indications, operators, operator
identifications, and coercions per-
mitted by the language. OIL then
generates functions that can be
called within the attribute grammar
specification to perform operator
identification.

Subpmblem Interaction. The par-
ticular module that solves the oper-
ator identification subproblem can
be derived from Figure 3. This
module makes operations available,
but those operations must be in-
voked with arguments that are de-
termined from the specific pro-
gram being compiled. The order in
which the operations are invoked is
also dependent on the source pro-
gram. In this section we show how
Eli uses an attribute grammar [171
written in LID0 to knit together
those operation invocations into a
consistent, cohesive, solution to the
translation subproblem of Table I.

The tile trenslate.specs, shown
in Figure 4a is a list of the tiles con-
stituting the attribute grammar that
describes the information flow of
the translation task. Each file con-
tains a piece of the attribute gram-
mar, defining the computations
associated with a few related
nonterminal symbols of the gram-
mar. These computations are basi-
cally invocations of the procedures
defined by modules generated
from specifications such as those in
Figure 3 or extracted from the Eli
library. A complete description of
LIDO, the language in which Fig-
ure 4b is written, is beyond the
scope of this paper [IO]. Briefly, a
rule describes actions related to a
single node of a tree. That node is
the one described by the produc-
tion lying between the keywords
‘RULE and ‘STATIC’. The first rule
in the figure, under the comment
“% Minilax Operators” is a rule
describing actions related to the
binary plus operator.

Attribute computations associ-
ated with the given rule are con-
tained between the keywords
“STATIC” and “END”. The first line
under STATIC sets the indication
attribute of the nonterminal symbol
xBin$ to PIUS. As Figure 3 shows,
this operator indication could be
identified as either the integer ad-
dition operator iAdd or the real
addition operator rAdd. The actual
operator identified becomes the
value of the operator attribute of the
“xBin@p” node. Assert invokes the

125

OIL library function OillsValidOp
to verify that the identified opera-
tor does not have a distinguished
“invalid” value. If OilIsValidOp
returns f&e, then the specified
string is output with the line num-
ber and character position of the
corresponding ‘+‘.

Rule TDyadic, under the comment
“% Minilax Expressions” employs
three OIL library functions to
complete the operator identifica-
tion process. (The multiple .&xpr’s
occurring in the rule are num-
bered left to right in the attribute
computations.) The function
OilIdResultTS2 computes the set of
possible result types given the oper-

,,~“?a 4. lnfonnatlo” ROW oYer me
tree

CIO”ra ,. Structuring speclflcatlons

ator indication xBin+~.mndzcatlon and
the set of possible result types
xExpr[Z].pt and xExpr[S].pt that are
computed in descendant expres-
sion nodes. OiUdOpTSZ performs
the actual operator identification
operation given the final type of
xExpr[l] computed in an ancestor
node, the operator indication, and
the possible types of the operands.
OilGetArgType computes the final
types of the operands given the
operator xBinop.operatw.

Smoothing Tool Interaction
Eli smooths the interaction between
tools in two ways: It removes re-
dundancy from the specifications,
and it hides all of the processing
that might be needed to prepare
the output of one tool for input to
another. Both simplifications are
important in reducing the load on

(a) The content of file structure. specs

the user. It is the Odin expert sys-
tem that enables Eli to combine ar-
bitrary tools written by different
people into a smoothly functioning
unit. A node in Odin’s derivation
graph represents a manufacturing
step: the process of applying a par-
ticular tool to a particular set of
inputs and creating a set of outputs.
The interface to each tool is a
Unix’” shell script. This script is
used to run the off-the-shelf tool
and to make that tool conform to
Eli’s environment. Thus, tools de-
veloped by different people with
different conventions can be com-
bined into an integrated system,
even when only executable versions
of those processors are available.
Since Odin, and not the user, de-
cides when a particular manufac-
turing step is needed, knowledge of
the individual tools can be con-
cealed. Hiding the tools from the
user not only simplifies the task of
generating a compiler, but also
makes system evolution much less
painful. In this section we will use
the tools associated with the struc-
turing task to illustrate both simpli-
fications.

There are four subtasks of the
structuring task listed in the third
column of Table I: scanning, con-
version, parsing and tree construc-
tion. Conversion procedures (which
convert identifiers into unique in-
ternal representations and obtain
the.values of constants) are usually
extracted from a library. Eli gener-
ates scanning and parsing proce-
dures from specifications provided
by the user. The relationship be-
tween these specifications shows
how Eli smooths tool interaction by
eliminating redundancy.

Removing RedoI&IKy from
Specifications. The scanner gener-
ator and the parser generator each
require a list of the basic symbols of
the source language. A distinct in-
teger code is associated with each
basic symbol, and this code is as-
signed by the scanner and used to
tell the parser which basic symbol
was recognized. The actual values
of the codes are not important, so

long as each basic symbol code is

unique and the codes associated
with a given basic symbol by the
scanner and the parser are the
same. If the user were preparing
input specifications for both of
these tools individually, the list of
basic symbols and encodings would
have to be produced and then sup-
plied to each. Clearly there is no
need for an Eli user to supply en-
codings; a tool can generate them
and add them to the specifications
for the scanner and parser genera-
tors. In fact, the Eli user does not

even directly supply the list of basic
symbols. Eli extracts the set of lit-
eral terminals, such as begin, from
the context-free grammar that de-
scribes the phrase structure so the
user only needs to describe the
nonliteral terminals, such as inte-
gers and identifiers, and the strut-
tllre of comments.

Figure 5a lists the files that spec-
ify the Minilax structuring task.

From these files, Eli can generate
the scanning and parsing proce-
dures, determine which conversion
procedures to invoke from the
scanner, and determine where the
parser should call tree construction
procedures.

Figure 5b describes Minilax non-

literal basic symbols and comments.
The identifier that precedes the
colon is the name used for a nonlit-
era1 basic symbol in the accompany-
ing context-free grammar. Since
comments do not appear in the
grammar, no identifiers are given
for them. This figure specifies that
identifiers are like those of Ada,
while real denotations and com-
ments are like those of Pascal. Inte-
gers are specified by a regular ex-

pression, and an integer conversion
processor, named mkint, which is
part of the Eli library. Notice how,
with the exception of the xInteger
specification, the user has drawn on
existing library specifications to
avoid detailed descriptions of these
nonliteral basic symbols and com-
ments. (The xInt%ger specification
is given in this way solely to illus-
trate the underlying specification

mechanisms. Normally it would be

written as xIntager: PASCAL-IN-
TEGER.) The library specifications
not only describe the scanning

characteristics, they also name the
appropriate conversion processors.
Thus, Figure 5b defines the com-
plete lexical analysis task for Mini-
lax’s nonliteral basic symbols and
comments. The act of mentioning a
nonliteral terminal symbol, such as
xIdentUler, in the context-free
grammar and in the .gla speciiica-
tion permits it to be used in other
parts of the specification. This can
be contrasted with Yacc, where
some amount of effort is required
to make nonliteral basic symbols

available to the prrxessor.
Since the literal basic symbols are

enclosed in apostrophes in the con-
crete syntax of Figure I, it is a sim-
ple matter for an appropriate tool
to extract them. In fact, the extrac-
tion tool is a bit more sophisticated.
It not only extracts the literal basic
symbols, but also the nonliteral
basic symbol names-identifiers
that no not appear on the left-hand
side of any grammar rule-in

order to verify the consistency of
the two specifications.

Using Output of One Tool as Input
to Another. If the parser generator
were being used independently, the

compiler designer would need to
insert calls on tree-building func-

tions into the context-free grammar
of Figure I. This is not required of
the Eli user because the output of
another tool, the attribute grammar
processor, is used to obtain the nec-
essary information. The process,
though intricate, illustrates how Eli
smooths the interaction between
two tools by transforming the out-
put of one into input for the other.

The attribute grammar describes

the structure of the abstract syntax
tree that represents the source pro-
gram. By examining the attribution
rules, the attribute grammar ana-
lyzer can output a context-free
grammar with embedded calls to
procedures that build the tree
nodes. A separate tool uses the tiles
miniIax.8gm and minUax.culI,
shown in Figure 5a to understand

the relationship between this gram-

mar, which represents the abstract
syntax, and the grammar of Figure
I, which represents the concrete
syntax. [I]. That twl then rewrites
Figure I, embedding the tree con-
struction calls in the proper posi-
tions. Finally, the modified version
of Figure I is supplied as input to
the parser generator.

Eli’s use of the relationship be-
tween the concrete and abstract
syntaxes is another example of
specifying an instance of a problem

rather than a solution method. If
the designer is going to use an ab-
stract syntax to describe the source
program tree, the designer must
understand the relationship be-
tween that abstract syntax and the
concrete syntax that describes the
phrase structure of the source pro-
gram text. Once this relationship is
specified, there is no need for any
further knowledge. In contrast with

Yacc, the designer does not need to
know how trees are built (if they are
built), or what the names of the
procedures that build them are.
There is no need to design strut-
tures to represent the tree nodes.
No decisions about where to place
calls in the concrete syntax need be
made. All of this tedious, error-
prone decision making is carried

out by an Eli component whose
very existence is unknown to the
designer.

EVOlUtlon
The third barrier to tool use noted

in the introduction was the poor
performance of tool-generated
compilers. There are two general
approaches to attacking this prob-
lem: changing the tool and chang-
ing the specification technique. An
individual tool can be selected and
the module it generates compared
with the module in hand-coded
compilers [IE]. The tool is modified
on the basis of this comparison to
bring the code it generates more

into line with that produced by
hand. Such modifications may
change the relationship of the tool’s
output to the remainder of the
compiler, and may necessitate

127

changes in the overall compiler
generation strategy.

One possible reaso” for chang-
ing a specification technique is that
some weakness in the specification
language deprives Eli of the infor-
mation it needs to generate a” eff-
cient compiler. Another, more
subtle reason is that the technique
requires the designer to describe a
particular solution method rather
than a” instance of the problem. If
the particular solution method is
inherently inefficient, then the gen-
erated compiler will exhibit this
inefficiency. Changing a specifica-
tion technique involves addition of
a new tool or tools, and almost cer-
tainly requires that the overall com-
piler generation strategy be altered.

We have see” that a complete
compiler description is made up of
many specifications, processed by a
variety of tools. A change in one
specification technique or tool
should not affect other specif&-
tions or tools. The str”cture of Eli
makes this kind of graceful evolu-
tion possible. For example, our
original GLA lexical analyzer gen-
erator provided very high-level
specification capability, based on
our assumption that “sers would
appreciate the ability to specify
complex lexical str”ct”res without
using regular expression [6]. This
version of GLA was installed in the
Eli system, and used for the first
several years of operation. When
users of the system complained that
the specification language was too
inflexible, the GLA package was
rewritten [3].

We changed the specification
technique to use a library of specifi-
cations of common programming
language lexical items, but to per-
mit a user to specify lexical items by
regular expressions or by explicit
scanning code when the need arose.
This necessitated changes in the
interface between GLA and the rest
of the system, which were easily
accommodated by modifying the
Odin derivation graph. Thus the
new GLA provided users additional
flexibility in describing the lexical
properties and internal representa-
tion of basic symbols, without re-

122

quiring them to understand the
changes to the tool interface.

ExperienCe with ELI
We have used Eli extensively as a
tool in its own development, in sup-
port of course work, and to develop
language processors. This experi-
ence includes generation of proces-
sors for normal programming lan-
guages, for extensions to standard
languages, and for special-purpose
languages. In this section we pre-
sent several case studies. Our intent
is to demonstrate the broad appli-
cation of Eli, give an idea of the in-
crease in productivity over hand
coding, and indicate the quality of
the generated processors.

Programming Languages
Compilers for existing program-
ming languages have been devel-
oped to provide data for reliable
performance evaluations. Four
kinds of comparisons could be
made with a” existing hand-coded
compiler for the same language:

l The size of the specifications can
be compared to the size of the
hand-coded source text.
l The specification development
effort can be compared to the de-
velopment effort for band-coding.
l The object code sizes can be com-
pared.
l The time to process a specific set
of test programs can be compared.

When carrying o”t such compari-
sons, it is important to guarantee
that the specification and the hand-
coded compiler have exactly the
same functionality, and that they
“se roughly the same algorithms.
I” this section we consider compiler
specifications for two programming
languages: ALGOL 60 and ICON.
Each of these languages has a com-
piler that is extensively described in
literature, so that it is relatively easy
to check for equivalent functional-
ity.

ALGOL 60. A compiler was con-
structed by one graduate student as
a class project in six weeks based on
Randell and Russell’s Whetstone
ALGOL [13]. He had previously

take” the graduate compiler con-
struction course (which was not
based on tools) and had industrial
compiler experience. He had stud-
ied the ALGOL 60 report in a grad-
uate programming languages
course, but had no other experi-
ence with ALGOL. Since his com-
piler did not follow the design
given in Randell and Russell’s book,
because that design does not follow
the Eli model, the six weeks in-
cluded a complete redesign. A”
experienced software engineer,
who had worked with the Whet-
stone compiler on the ICL KDFS,
estimated that he could carry o”t a
new implementation of Randell
and Russell’s compiler in twelve
weeks.

ICON. Similarly, for our semester-
long graduate compiler tools
course, a translator was constructed
for Icon [4]. This translator pro-
duces as output intermediate code
which is then interpreted. Of par-
ticular concern in this project was a
comparison between the automati-
cally produced compilers of Eli and
hand-written ones. For this reason,
the Eli-produced translator was
designed to duplicate the behavior
of part of the standard Icon imple-
mentation [5].

It is estimated that the total de-
velopment time was about one-
third of that which could be ex-
pected if the translator was built
from scratch in C. The standard
version contains (Icon-dependent)
modules, for example, lexical anal-
ysis and tree construction. Since Eli
already provides many of these
tasks in language-independent
modules, specifications relating to
lexical and syntactic analysis are
about one-third of the sire of the
corresponding code in the standard
version. Code size of the portions
relating to semantic analysis and
code generation is about the same
in the two versions. The Eli specifi-
cations are at a higher level, bow-
ever, which greatly reduced the
development time.

Run-time comparison, using a
large set of test programs, showed
that the Eli-generated version is

only about 50% slower than the
hand-coded version. Future efforts
will involve a more efficient attri-

bute evaluator, which is expected to
reduce this difference significantly
with no change to the speciiica-
tions.

Programming Language
EXtt?“SlO”S
Eli is ideal for implementing prcx-
essors for extensions to program-
ming languages because it is possi-
ble to begin with specifications that
already generate a correct compiler
for the base language. These speci-
fications are much easier to modify
than the code for an existing com-

piler would be, because they de-
scribe instances of the compiler

subproblems rather than ways in
which those subproblems were
solved. Therefore, the designer of
the extension needs only to change
the description so that it iits the
new instance of the problem engen-
dered by the extension.

Dino is a superset of C designed
for writing parallel programs for

distributed memory machines [14,
151. A Dino compiler that translates
Dino code into C code targeted for
the Intel IPSC family of hypercubes
has been developed using the Eli
system. In order to save develop-
ment time, an existing C specitica-
tion, which was previously written
using Eli, was augmented with the
Dino constructs. The resulting
specification was roughly three

times as large as the original C spec-
ification. The main benefit that Eli
has supplied to the project was the
support of a relatively high-level
perspective on the construction of
the compiler. This has provided the
users of Eli two advantages over
modifying the Portable C Compiler
for instance. First, the time re-
quired to understand the Eli C
specification was much less than

that required to understand the
Portable C Compiler specification.
This is quite important, since the
implementation of the Dino modi-
fications is very dependent on the
compiler being modified. Second, it
was much easier to make changes in
the structure of the language, since

the constructs of the Eli system hide
a great deal of the tedium that the
user of the Portable C Compiler is
forced to handle, greatly aiding the
language design process.

Since the Dino compiler is based
“n a fairly old C specification, it
uses none of the more recent Eli
library facilities such as the DDL
compiler or OIL. Almost all of the
compiler tasks are described by the
attribute grammar. Compiler sup-
port code consists of an early
version of the Eli environment
module, a module for doing ma-
chine-dependent arithmetic, and
an abstract data type used for pro-
cessing C typpedef c”“str”cts.

Special-Purpose Languages
The compiler for OIL shown in
Figure 3 was one of the Eli compo-
“ems implemented via Eli. OIL is
typical of the little languages that
can provide high leverage for cer-
tain problems. The implementation
was carried out in about eight
weeks by a student with little com-
piler construction experience.

OIL is based on the method for
overload resolution developed for
Ada compilers [9, 121. The OIL
compiler produces a module that
provides functions for operator
identification and for determining
coercion sequences. It also creates
an initialized database for “se by
those functions, and a” interface
specification that can be included
by any module invoking the func-
tions.

The specifications used to define
the OIL compiler follow the same
patter” as those for Minilax. They
comprise descriptions of the nonlit-
eral basic symbols, the phrase str”c-
ture of an OIL specification, and
the structure and decorations of the
murce program tree. Values for
s”me of the decorations are corn-
puted by the library environment
module, while others are computed
by modules written in C specifically
for this compiler.

RedWing Specification
and code Sizes

By analyzing the str”ct”re of com-
pilers such as those we have de-

scribed, c”mm”” problems can be
identified, their solutions studied
and efforts can be made to produce
standard modules which solve the
problems in a general way. Areas
where this has happened in the past
include the definition table (DDL)
and operator identification (OIL).

The production of external
modules for “se in individual corn-
pilers provides an opportunity for
similarities t” be identified and
general additions to the Eli library
to be designed. For example, we
have now developed a general facil-
ity for output-each of the compil-
ers described here contained their
own such modules. Rather than
have each compiler writer code his
or her own file management and
output functions by hand, a library
module can now be invoked.

Future Work
Hand-coded compilers often avoid
constructing one or both of the
trees we have discussed, or they
write them in a linearized form to
secondary storage. Optimizing
compilers usually build explicit ver-
sions of both data str”ct”res, but
may identify common subexpres-
sion nodes t” convert the target tree
into a directed acyclic graph.

Strategies that either avoid tree
construction entirely or “se linear-
ized versions in secondary storage
restrict the amount of information
available to make certain decisions.
For example, suppose neither tree
is built explicitly. This means that
only information available “earlier”
in the program can be used in mak-
ing any decision. The str”ct”re of a
standard Pascal program was de-
fined specifically to avoid requiring
a Pascal compiler to build either
tree explicitly: All identifiers must

,be declared before they are used,
with the exception of the domain
type of a pointer. (Since informa-
tion about the domain type of a
pointer is not needed to process
type declarations, and the declara-
tion must appear before the end of
the type section in which the
pointer is declared, the compiler’s
constraint is met in this case as
Well.)

129

None of the specification tech-

niques used by Eli require that ex-
plicit trees be built. The attribute
grammar describes the information
flow in terms of a tree, but it can be
shown that if the flow has certain
patterns, then all attribute compu-
tation can be done during parsing.
Other flow patterns can be realized
by compilers that write linearized
versions of the trees to secondary
storage. Our current tools are able
to give the user feedback about the
data flow patterns in a given speci-

fication, guiding a modification to
satisfy any constraint that user
wishes to place on the data flow. We
are beginning to think about how to
generate a procedure to carry out
parse-time attribution in those cases
where it is possible, and how to in-
tegrate that procedure with the
remainder of the generated com-

piler.
Eli’s open nature makes experi-

ments with a wide variety of tools

possible. For example, attribute-
grammar-like techniques for de-
scribing data flow in directed
acyclic graphs have been reported
in the literature [161. Tools for pro-
cessing such specifications could be
added to Eli, allowing experiments
to test their practicality for real
compiler generation problems.

Conclusions
Eli is a complete, flexible compiler
construction system. Based on ex-
isting tools, it is an open system that
is able to evolve as new tools and
techniques become available. Eli
does not rely on any one specifica-
tion language to describe all of the

subproblems of compiler construe-
tion; rather it provides a coherent
framework in which specifications
written in a number of languages
are combined to describe a com-
plete product. A simple user inter-
face provides a uniform method for
requesting derivations from specifi-
cations. Such requests only involve
product names. Eli determines the
particular set of tool invocations on
the basis of the state of its cache, as
reflected in a knowledge base.

We have used Eli to create com-

130

pilers for small, special-purpose

languages, standard programming
languages and extensions to exist-
ing languages. It has improved our

productivity and has enabled inex-
perienced users to undertake and
complete significant compiler proj-
ects. We believe that Eli effectively
addresses the problems that have
prevented widespread use of com-
piler construction tools. Our CUT-
rent research program is aimed at
further simplifying the use of Eli
htself and improving the perfor-
mance of the generated compilers.

Portions of this research were
funded by the U.S. Army Research
Office under contract number
DAAL 03-86-k-0100. q

1. Bahrami, A. CAGT-An auro-
mated approach to abstract and
parsing grammars. MS thesis, De-
partment of Electrical and Com-
puter Engineering, University of
Colorado, Boulder, Cola, 1986.

2. Clemm, GM. and Osterweil, L.J. A
mechanism for environment inte-
gration. ACM Tmnr. Prog. Languages
and Syst. 12 (Jan. 1990), 1-25.

3. Gray, R.W. A generator for Lexical
analyzers that programmers can
use. I” Pmcecdings 0, “SENIX Ca-
fc~mcc (June 1988).

4. Griswold, R.E. and Griswold, MT.
The Ican Programming Language.
Prentice Hall, Englewaod Cliffs,
N.J., 1983.

5. Griswold, R.E. and Griswold, M.T.
The IrtqGmentiti0n 0f Ihc Icon Pro-
gmnwning Language. Princeton Uni-
versity press, Princeton, N.J., 1986.

6. Hewing, V.P. The automatic gen-
eration of fast lexical analyzers.
SoJtm-Pm. ELI. 16 (Sept. 1986).
801-808.

7. Hat, J.B. Compile-time type
matching. The CmnpUt. I. 9 (Feb.
1967), 365-369.

8. Johnson, S.C. Yacc-Yet another
compiler-compiler. Computer Sci-
ence Tech. Rep. 32, Bell Telephone
Laboratories, ‘Murray Hill,’ N.J.,
luly 1975.

9. &tens, U. Code generation based
on operator identification. Bericht
der Reihe Informatik Nr. 49,
Universitat-GH Paderbxn, Pader-
ban, FRG, Jan. 1988.

10. Kastens, U. LIDO--A specification

language for attribute grammars.
Betriebsdatenerfassung, Fachbe-
r&h Mathematik-lnformatik,
Universitat-GH Pad&an, Pader-
born, FRG, Oct. 1989.

11. Lesk, M.E. LEX-A Lexical ana-
lyzer generator. Computing Science
Tech. Rep. 39, Bell Telephone Lab-
oratories, Murray Hill, N.J., 1975.

12. Persch, G., Winterstein, G., Daus-
ma”“, M., and Drossopoulo”, S.
Overloading in Preliminary Ada.
SIGPLAN Not. 15 (Nov. 1980). 47-
56.

,3. Randell. B. and Russell, L.J. ALGOL
60 Imp&wtwtation, Academic Press,
London, 1964.

t4. Rosing, M. and Scbnahel, R.B. An
overview of Dino-A new language
for numerical computation on dis-
tributed memory multiprocessors.
cu.CS-385.88, Department of
Computer Science. University of
Colorado, Boulder, Cola., Mar.
1988.

15. Rosing, M., Schnahel, R.B., and
Weaver, R.P. Dine: Summary and
Examples. In Proceedings of t/u 1988
ConJmncr on Hypercuhe Concuffmt
Compulerr and Appltialions, ACM
Press, 1988.

16. Sonnenschein, M. Graph transla-
tion schemes to generate compiler
parts. ACM Tmnr. Pmg. Ln”gwrgcs
and Syst. 9 (Oct. 1987), 473-490.

17. Waite, W.M. Use of attribute gram-
mars in compiler construction. In
Awibv,e Gra,,mu,~ and their Afllim-
tiom, vol. 41, P. Deransart and M.
Jourdan, Ed%. Springer Verlag,
Berlin, 1990.

18. Waite, WM. and Carter, L.R. The
cost of a generated parser. Softi.-
Pnu .5x$. IS (Mar. 1985), 221-239.

19. Waite, W.M., Grosch, J., and
Schroer, F.W. Three compiler spec-
itications. GMD-Studien Nr. 166,
Gesellwhaft fur Mathemadk und
Datenverarbeitung, Karlsruhe.
FRG, Aug. 1989.

20. Waite, WM., Hewing, V.P., and
Kastens, U. Configuration control
in compiler construction. In Pro-
ceedings of the Intemtional WorMof
on SoJtwre Version and Configuration
Cmtm,, Teuhner (Smttgart, FRG,
1988).

CR Categories and Subject Descrip
tom: D.2.6 [S&ware Engineering]:
Programming Environments: D.3.2
(Programmiag Iaqtage.31: Language
Classifications-spccialiled nj$&wn
languages; D.3.4. [Programming Lan-
goages]: Processors

	Untitled

