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ver the past five years, our group 
has developed the Eli’ system to 
reduce the cost of producing 
compilers. Eli has been used to 
construct complete compilers 
for standard programming 

languages extensions to standard programming languages, and special- 
purpose languages. For the remainder of this article, we will use the term 
compiler when referring to language processors. 

One of the most important ways to enhance productivity in software engi- 
neering is to provide more appropriate descriptions of problems and their 
solutions. TheElisystemreducesthe 
cost of producing a compiler in 
exactly this manner. Compiler con- 
struction is one of the most widely 
studied applications in computer sci- 
ence. As such, many cnmmon sub- 
problems of this application have 
been identified and standard solu- 
tions devised. With the decomposi- 
tion ofthe compilation problem into 
anumberofsmallersubproblems, it 

becomespossibletosolveeachofthe 
small problems by using declarative 
speciticationsinsteadofwritingalgo- 
rithmic code. The use of specifica- 
tions permits the description of the 
natureoftheproblemratherthan the 
nature ofthe solution; the nature of 
thesolutionisembodiedinatoolthat 
translates the specifications into 
code. 

Unfortunately, veryfewcompiler 
construction tools are in common 
use. Two of the mat popular are 
LEX [ll], a scanner generator that 

acceptsregularexpressionsandpro- 
duces a table-driven recognizer, and 
Yacc [El, an LALR(l) parser gener- 
ator. Bothofthese toolsareusedprin- 
cipally for phototyping and for the 
generation of special-purpose proc- 
essors, but are viewed by many as 
king too slow [ill or not providing 
adequate error recovery [E] to he 
used in a production environment. 
There are a numberofadditionlbar- 
riers to increased tool use: 
l Asteeplearningcurveisassociated 
with the large number of different 
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conventions and options needed to 
control each tool. 
l Most tools were developed inde- 
pendently of one another, and do 
not work smoothly together. 
. Many tools produce code whose 
performance is far below that of a 
hand-coded solution to the same 
problem. 

The Eli system was created to 
overcome these barriers. A simple 
compiler model provides a specific 
set of subproblems to be solved by 
the designer. Solutions are de- 
scribed in the form of specifications 
that may be created specially, or 
extracted from a library, and the 
actual compiler construction is 
managed by an expert system that 
hides the details of tool use. Eli 
smooths the interaction between 
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independently developed tools in needed to prepare the output of 
three ways: it removes redundancy one tool for input to another, and it 
from the specifications, it hides all greatly simplifies user requests for 
of the processing that might be products. Finally, Eli is an open sys- 



type mteger and real. Assignmelrt IS 
a” operator, and there are Boolean 
expressions (but no Boolean vari- 
ables), if-clauses and while-loops. 
The context-free grammar for 
Minilax is shown in Figure 1. 

Controlling the Tools. A complete 
description of a Minilax compiler 
consists of several files, each con- 
taining a specification or part of a 
specification. Some of these tiles 
may be take” from a library, others 
may be shared among several dif- 
ferent projects. A user must be able 
to submit this collection of tiles to 
Eli, and to select properties of the 
compiler being described. It may 
only be necessary to test some as- 
pect of the compiler. On the other 
hand, it might be necessary to ob- 
tain a” executable version of the 
compiler, or a directory of source 
tiles from which a” executable ver- 
sion could be built without the “se 
of Eli. 

Most requests will involve a be 
wildering array of tools and inter- 
mediate products. Some of these 
products may already have bee” 
constructed to satisfy previous re- 
quests. Eli removes the burden of 
managing this complexity from the 
user by placing it on the shoulders 
of a” expert system called Odin [Z] 
whose area of expertise is the man- 
agement of complex user requests 
[5]. Eli’s component tools and their 
relationships are described by a 
derivation graph that resides in 
Odin’s knowledge base. Odin also 
manages a cache of derived objects. 
When a user makes a request of Eli, 
Odin’s inference engine determines 
the sequence of operations needed 
to satisfy that request, reusing 
cached objects in the derivation 
wherever possible. 

Eli’s primary input is a text file 
whose name is the name of the 
compiler being generated, followed 
by the extension ‘specs’. (Each file 
name has a” extension that names 
the lrpe of that tile. File types are 
used by the expert system to deter- 
mine how the file should be pro- 
cessed. Thus the extension ‘.oil’ 
indicates that the compiler for the 
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tern as it is easy to add tools or to 
replace existing tools with new ver- 
sions that create higher-perfor- 
mance compilers. 

The ELI System 
Eli is a collection of off-the-shelf 
tools controlled by an expert system 
whose problem domain is the man- 
agement of complex user requests 
[ZO]. This str”ct”re allows us to at- 
tack all three of the barriers to tool 
“se we have mentioned. 

Since the expert system manages 
the construction process, we can 
interpose arbitrarily complex pro- 
cessing to make simple user input 
acceptable to off-the-shelf tools. 
The number of specifications can 
be reduced, and special-purpose 
languages can be used to simplify 
those specifications. Values for 
many of the tool parameters can be 
deduced from the specifications 
themselves. 

The Eli system carries o”t arbi- 
trary processing to match the o”t- 
put of one tool to the input of an- 
other, to prepare consistent input 
for several tools from a single speci- 
fication, and to combine outputs 
from several tools. Thus, tools de- 
veloped by different people with 
different conventions can be com- 
bined into a” integrated system, 
eve” when only executable versions 
of those prxessors are available. 

To add a new tool to Eli, or to 
replace a” existing tool with a bet- 
ter one, only the expert system’s 
knowledge base must be changed. 
Eli users are not concerned with the 
knowledge base; they are only in- 
terested in the products and pa- 
rameters that Eli provides. Knowl- 
edge base changes may add new 
products and parameters or make 
existing ones disappear, but most 
users can continue business as 
usual. 

InteractIng wlth Eli 
The steep learning curve associated 
with compiler construction tools is 
the most significant barrier to their 
widespread “se. To overcome this 
barrier Eli embodies a decomposi- 
tion of the total problem into a set 

of well-deftned subproblems, pro- 
vides libraries and special-purpose 
languages for solving those sub- 
problems, and automatically com- 
bines the solutions into a working 
compiler. 

A rather stable overall design for 
a compiler has evolved from expe- 
rience over the last 20 years. As 
summarized in Table 1, this design 
decomposes the problem of compil- 
ing a program into subproblems. 
The structuring task analyzes the 
phrase str”ct”re of the source pro- 
gram, determining the semantically 
significant components. Conceptu- 
ally, the structuring task builds a 
tree according to the abstract syn- 
tax of the source language. The 
translation task uses contextual in- 
formation to verify that the sowce 
program is consistent and derives 
a” equivalent tree, whose structure 
is determined by the abstract syntax 
of the target language. Finally, the 
encoding task allocates target ma- 
chine resources to the target pro- 
gram and maps the target tree into 
the appropriate machine instruc- 
tion sequence. 

Eli generates a compiler from 
specifications of the str”ct”res of 
the four objects postulated by this 
model (source program text, source 
program tree, target program tree 
and machine instruction set) and 
the relationships between them. 
Effectively, the designer defines a 
particular instance of the general 
compilation problem by providing 
these specifications. Some of the 
tools check the specifications for 
consistency, some extract informa- 
tion relevant to the specific sub- 
problems listed in the third column 
of Table 1, and others generate 
code to solve those subproblems. 
Finally, the generated modules are 
combined with standard modules 
from Eli’s library to obtain a com- 
plete compiler that solves the prob- 
lem specified by the designer. 

To make the discussion concrete, 
this article bases its examples on a 
simple language called Minilax 
[19]. Minilax is a conventional 
block-structured, expression- 
oriented language with variables of 



?iinwwde “*t*ct”re.speaa”. spcifications for the wnm”dng task 

ff include “translate. speos” Anribrc grammarforthe uanslslim task 
en”ir0nment.li.b Use Ihe standard name analysis module 
c+de”t.oil Spedfication for the type aulysin module 
Properties.ddl Specification for the definition table module 
#includs -vax.Spclr” Specification forthe encoding lark 

(a) The content of file Mini~axspecs, a specification file 

Check whether the concrete syntax satisfies the parser generator constraints: 
Mi”ilax.specs :pars.&1e 

Obtain B version of tio Mtilax compiler wilh embedded profiling code: 
Mi”ilax.specs rprof :exe > Mi”ilax_prof.exe < 

(b) Some typical El1 requests Involving the specification tile of (a) 

Operator Identification Language 
should be applied to that tile. Eli 
passes the specification file through 
the C preprocessor, and then inter- 
prets each line as the name of a 
specification file. The use of the C 
preprocessor allows the user to 
group specification file names logi- 
cally, control the selection of certain 
specifications by directives, and in- 
clude specifications from libraries. 

Figure 2 shows the top-level 
specification file for the Minilax 
compiler, and some Eli requests 
that might be made during com- 
piler development. The specifica- 
tion files Structura8pec8, tram+ 
lataspecs and vaxspece list the 
specifications for the three major 
compilation subtasks given in Table 
I. We will consider st.ructure.~pecs 
in the section on tool interaction, 
trea81ata8pec8 will be given in 
Figure 4.1, and vax.8~~~8 are ex- 
tracted from Eli’s library. A stan- 
dard module for carrying out the 
name analysis task, shown in Table 
I is also available in Eli’s library, 
and this module’s interface is made 
available via environment. 
lib. This interface is not a set of 
specifications, and therefore its 
name does not have the extension 
.8pecs. Opident.ofl and Pivper- 
tiesddl are all specifications, and 
are discussed in the section on sub- 
problem specifications. 

Figure 2b shows examples of 
some user requests of the Eli sys- 
tem. Each request line in the figure 
is read from left to right. A colon (:) 
can be read as “derive to”; a plus 
sign (+) introduces a keyword pa- 
rameter, which may or may not 
have an associated value. Notice 
that it is possible to derive an object 
from a derived object - %x+’ is a 
general derivation that obtains 
error reports produced by some 
other derivation. A greater than 
symbol (>) is a redirection mecha- 
nism. It is used to place the object 



resulting from the derivation into a 
tile or a directory. 

Notice that individual tools are 
never invoked directly when using 
Eli, and their particular interfacing 
requirements are invisible. The 
user is concerned only with com- 
posing the appropriate request. 
Based on that request, and the state 
of the cache, Eli determines what 
needs to be done, that is, what tools 
to invoke, and what intermediate 
results to produce. In order to 
make requests of Eli, a person must 
learn only a few derivation and pa- 
rameter names. By hiding all the 
conventions and most of the op- 
tions needed to control each tool, 
Eli sharply reduces the number of 
items that must be learned. 

The following will illustrate how 
subproblem solutions are specified 
to Eli and how the resulting mod- 
ules are combined to produce a 
complete compiler. 

Subproblem Specifications. One of 
the difficulties in learning to use 
conventional compiler construction 
tools is learning how to specify the 
solutions to the subproblems (as 
listed in Table 1) in the notation of 
those tools. Eli attacks this problem 
by providing specialized languages 
that are tailored to specific sub- 
problems. If one understands the 
subproblem, the specification lan- 
guage is quite obvious. 

One of these special-purpose 
languages, OIL, is used to solve the 
operator identification problem 
common to compiler construction. 
Our purpose in showing this exam- 
ple is to illustrate both how special- 
ized notations match the designer’s 
understanding of the subproblem, 
and how the designer can describe 
an instance of the problem rather 
than a solution method. 

The operator identification 
problem is easily stated: most typed 
languages permit the overloading of 
operators, so that a given operator 
may have operands of several types. 
It is the responsibility of the com- 
piler to detect valid operatorloper- 
and combinations and to generate 
the correct code to implement the 

operation. ‘l’he compiler may also 
have to generate code to coerce 
operands of one type to another. 
We use the term o@rator ind~cahon 
to make explicit that the same oper- 
ator may be used to indicate several 
kinds of operations. In Minilax the 
operator indication “+” may indi- 
cate integer addition or real addi- 
tion. The language also permits 
operations such as, 

IntegerValue + RealValue 

for which the compiler needs to 
generate a coercion operation to 
coerce the integer value to a real 
value prior to performing real ad- 
dition. 

The first section of Figure 3 IisIs 
the operations that are available in 
Minilax, specifying the signature 
for each. Thus, Minilax provides 
the usual arithmetic operations on 
both integer and real values, and 
the compiler writer has chosen to 
name these operations iAdd (integer 
addition), rAdd (real addition), and 
so forth. The “+” is an overloaded 
operator that could mean either 
integer or real addition, as indi- 
cated in the section entitled “Identi- 
fication.” If an integer value is 
given in a context where a real 
value is required, then the compiler 
is allowed to use thefloat operation 
to convert that value from integer 
to real because an appropriate co- 
ercion has been specified, as shown 
in the section entitled “Coercions.” 
Minilax is a typed language. Types 
in a language are distinct entities 
that are related to other types by a 
lattice [7]. Figure 3 describes this 
type lattice, and the operator iden- 
tification based on it. (The relation- 
ship on which the lattice is based is 
the partial order is coercible to.) 

Figure 3 is the input specification 
to OIL. OIL allows the language 
designer to specify the operator 
indications, operators, operator 
identifications, and coercions per- 
mitted by the language. OIL then 
generates functions that can be 
called within the attribute grammar 
specification to perform operator 
identification. 

Subpmblem Interaction. The par- 
ticular module that solves the oper- 
ator identification subproblem can 
be derived from Figure 3. This 
module makes operations available, 
but those operations must be in- 
voked with arguments that are de- 
termined from the specific pro- 
gram being compiled. The order in 
which the operations are invoked is 
also dependent on the source pro- 
gram. In this section we show how 
Eli uses an attribute grammar [ 171 
written in LID0 to knit together 
those operation invocations into a 
consistent, cohesive, solution to the 
translation subproblem of Table I. 

The tile trenslate.specs, shown 
in Figure 4a is a list of the tiles con- 
stituting the attribute grammar that 
describes the information flow of 
the translation task. Each file con- 
tains a piece of the attribute gram- 
mar, defining the computations 
associated with a few related 
nonterminal symbols of the gram- 
mar. These computations are basi- 
cally invocations of the procedures 
defined by modules generated 
from specifications such as those in 
Figure 3 or extracted from the Eli 
library. A complete description of 
LIDO, the language in which Fig- 
ure 4b is written, is beyond the 
scope of this paper [IO]. Briefly, a 
rule describes actions related to a 
single node of a tree. That node is 
the one described by the produc- 
tion lying between the keywords 
‘RULE and ‘STATIC’. The first rule 
in the figure, under the comment 
“% Minilax Operators” is a rule 
describing actions related to the 
binary plus operator. 

Attribute computations associ- 
ated with the given rule are con- 
tained between the keywords 
“STATIC” and “END”. The first line 
under STATIC sets the indication 
attribute of the nonterminal symbol 
xBin$ to PIUS. As Figure 3 shows, 
this operator indication could be 
identified as either the integer ad- 
dition operator iAdd or the real 
addition operator rAdd. The actual 
operator identified becomes the 
value of the operator attribute of the 
“xBin@p” node. Assert invokes the 
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OIL library function OillsValidOp 
to verify that the identified opera- 
tor does not have a distinguished 
“invalid” value. If OilIsValidOp 
returns f&e, then the specified 
string is output with the line num- 
ber and character position of the 
corresponding ‘+‘. 

Rule TDyadic, under the comment 
“% Minilax Expressions” employs 
three OIL library functions to 
complete the operator identifica- 
tion process. (The multiple .&xpr’s 
occurring in the rule are num- 
bered left to right in the attribute 
computations.) The function 
OilIdResultTS2 computes the set of 
possible result types given the oper- 

,,~“?a 4. lnfonnatlo” ROW oYer me 
tree 

CIO”ra ,. Structuring speclflcatlons 

ator indication xBin+~.mndzcatlon and 
the set of possible result types 
xExpr[Z].pt and xExpr[S].pt that are 
computed in descendant expres- 
sion nodes. OiUdOpTSZ performs 
the actual operator identification 
operation given the final type of 
xExpr[l] computed in an ancestor 
node, the operator indication, and 
the possible types of the operands. 
OilGetArgType computes the final 
types of the operands given the 
operator xBinop.operatw. 

Smoothing Tool Interaction 
Eli smooths the interaction between 
tools in two ways: It removes re- 
dundancy from the specifications, 
and it hides all of the processing 
that might be needed to prepare 
the output of one tool for input to 
another. Both simplifications are 
important in reducing the load on 

(a) The content of file structure. specs 

the user. It is the Odin expert sys- 
tem that enables Eli to combine ar- 
bitrary tools written by different 
people into a smoothly functioning 
unit. A node in Odin’s derivation 
graph represents a manufacturing 
step: the process of applying a par- 
ticular tool to a particular set of 
inputs and creating a set of outputs. 
The interface to each tool is a 
Unix’” shell script. This script is 
used to run the off-the-shelf tool 
and to make that tool conform to 
Eli’s environment. Thus, tools de- 
veloped by different people with 
different conventions can be com- 
bined into an integrated system, 
even when only executable versions 
of those processors are available. 
Since Odin, and not the user, de- 
cides when a particular manufac- 
turing step is needed, knowledge of 
the individual tools can be con- 
cealed. Hiding the tools from the 
user not only simplifies the task of 
generating a compiler, but also 
makes system evolution much less 
painful. In this section we will use 
the tools associated with the struc- 
turing task to illustrate both simpli- 
fications. 

There are four subtasks of the 
structuring task listed in the third 
column of Table I: scanning, con- 
version, parsing and tree construc- 
tion. Conversion procedures (which 
convert identifiers into unique in- 
ternal representations and obtain 
the.values of constants) are usually 
extracted from a library. Eli gener- 
ates scanning and parsing proce- 
dures from specifications provided 
by the user. The relationship be- 
tween these specifications shows 
how Eli smooths tool interaction by 
eliminating redundancy. 

Removing RedoI&IKy from 
Specifications. The scanner gener- 
ator and the parser generator each 
require a list of the basic symbols of 
the source language. A distinct in- 
teger code is associated with each 
basic symbol, and this code is as- 
signed by the scanner and used to 
tell the parser which basic symbol 
was recognized. The actual values 
of the codes are not important, so 



long as each basic symbol code is 

unique and the codes associated 
with a given basic symbol by the 
scanner and the parser are the 
same. If the user were preparing 
input specifications for both of 
these tools individually, the list of 
basic symbols and encodings would 
have to be produced and then sup- 
plied to each. Clearly there is no 
need for an Eli user to supply en- 
codings; a tool can generate them 
and add them to the specifications 
for the scanner and parser genera- 
tors. In fact, the Eli user does not 

even directly supply the list of basic 
symbols. Eli extracts the set of lit- 
eral terminals, such as begin, from 
the context-free grammar that de- 
scribes the phrase structure so the 
user only needs to describe the 
nonliteral terminals, such as inte- 
gers and identifiers, and the strut- 
tllre of comments. 

Figure 5a lists the files that spec- 
ify the Minilax structuring task. 

From these files, Eli can generate 
the scanning and parsing proce- 
dures, determine which conversion 
procedures to invoke from the 
scanner, and determine where the 
parser should call tree construction 
procedures. 

Figure 5b describes Minilax non- 

literal basic symbols and comments. 
The identifier that precedes the 
colon is the name used for a nonlit- 
era1 basic symbol in the accompany- 
ing context-free grammar. Since 
comments do not appear in the 
grammar, no identifiers are given 
for them. This figure specifies that 
identifiers are like those of Ada, 
while real denotations and com- 
ments are like those of Pascal. Inte- 
gers are specified by a regular ex- 

pression, and an integer conversion 
processor, named mkint, which is 
part of the Eli library. Notice how, 
with the exception of the xInteger 
specification, the user has drawn on 
existing library specifications to 
avoid detailed descriptions of these 
nonliteral basic symbols and com- 
ments. (The xInt%ger specification 
is given in this way solely to illus- 
trate the underlying specification 

mechanisms. Normally it would be 

written as xIntager: PASCAL-IN- 
TEGER.) The library specifications 
not only describe the scanning 

characteristics, they also name the 
appropriate conversion processors. 
Thus, Figure 5b defines the com- 
plete lexical analysis task for Mini- 
lax’s nonliteral basic symbols and 
comments. The act of mentioning a 
nonliteral terminal symbol, such as 
xIdentUler, in the context-free 
grammar and in the .gla speciiica- 
tion permits it to be used in other 
parts of the specification. This can 
be contrasted with Yacc, where 
some amount of effort is required 
to make nonliteral basic symbols 

available to the prrxessor. 
Since the literal basic symbols are 

enclosed in apostrophes in the con- 
crete syntax of Figure I, it is a sim- 
ple matter for an appropriate tool 
to extract them. In fact, the extrac- 
tion tool is a bit more sophisticated. 
It not only extracts the literal basic 
symbols, but also the nonliteral 
basic symbol names-identifiers 
that no not appear on the left-hand 
side of any grammar rule-in 

order to verify the consistency of 
the two specifications. 

Using Output of One Tool as Input 
to Another. If the parser generator 
were being used independently, the 

compiler designer would need to 
insert calls on tree-building func- 

tions into the context-free grammar 
of Figure I. This is not required of 
the Eli user because the output of 
another tool, the attribute grammar 
processor, is used to obtain the nec- 
essary information. The process, 
though intricate, illustrates how Eli 
smooths the interaction between 
two tools by transforming the out- 
put of one into input for the other. 

The attribute grammar describes 

the structure of the abstract syntax 
tree that represents the source pro- 
gram. By examining the attribution 
rules, the attribute grammar ana- 
lyzer can output a context-free 
grammar with embedded calls to 
procedures that build the tree 
nodes. A separate tool uses the tiles 
miniIax.8gm and minUax.culI, 
shown in Figure 5a to understand 

the relationship between this gram- 

mar, which represents the abstract 
syntax, and the grammar of Figure 
I, which represents the concrete 
syntax. [I]. That twl then rewrites 
Figure I, embedding the tree con- 
struction calls in the proper posi- 
tions. Finally, the modified version 
of Figure I is supplied as input to 
the parser generator. 

Eli’s use of the relationship be- 
tween the concrete and abstract 
syntaxes is another example of 
specifying an instance of a problem 

rather than a solution method. If 
the designer is going to use an ab- 
stract syntax to describe the source 
program tree, the designer must 
understand the relationship be- 
tween that abstract syntax and the 
concrete syntax that describes the 
phrase structure of the source pro- 
gram text. Once this relationship is 
specified, there is no need for any 
further knowledge. In contrast with 

Yacc, the designer does not need to 
know how trees are built (if they are 
built), or what the names of the 
procedures that build them are. 
There is no need to design strut- 
tures to represent the tree nodes. 
No decisions about where to place 
calls in the concrete syntax need be 
made. All of this tedious, error- 
prone decision making is carried 

out by an Eli component whose 
very existence is unknown to the 
designer. 

EVOlUtlon 
The third barrier to tool use noted 

in the introduction was the poor 
performance of tool-generated 
compilers. There are two general 
approaches to attacking this prob- 
lem: changing the tool and chang- 
ing the specification technique. An 
individual tool can be selected and 
the module it generates compared 
with the module in hand-coded 
compilers [IE]. The tool is modified 
on the basis of this comparison to 
bring the code it generates more 

into line with that produced by 
hand. Such modifications may 
change the relationship of the tool’s 
output to the remainder of the 
compiler, and may necessitate 
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changes in the overall compiler 
generation strategy. 

One possible reaso” for chang- 
ing a specification technique is that 
some weakness in the specification 
language deprives Eli of the infor- 
mation it needs to generate a” eff- 
cient compiler. Another, more 
subtle reason is that the technique 
requires the designer to describe a 
particular solution method rather 
than a” instance of the problem. If 
the particular solution method is 
inherently inefficient, then the gen- 
erated compiler will exhibit this 
inefficiency. Changing a specifica- 
tion technique involves addition of 
a new tool or tools, and almost cer- 
tainly requires that the overall com- 
piler generation strategy be altered. 

We have see” that a complete 
compiler description is made up of 
many specifications, processed by a 
variety of tools. A change in one 
specification technique or tool 
should not affect other specif&- 
tions or tools. The str”cture of Eli 
makes this kind of graceful evolu- 
tion possible. For example, our 
original GLA lexical analyzer gen- 
erator provided very high-level 
specification capability, based on 
our assumption that “sers would 
appreciate the ability to specify 
complex lexical str”ct”res without 
using regular expression [6]. This 
version of GLA was installed in the 
Eli system, and used for the first 
several years of operation. When 
users of the system complained that 
the specification language was too 
inflexible, the GLA package was 
rewritten [3]. 

We changed the specification 
technique to use a library of specifi- 
cations of common programming 
language lexical items, but to per- 
mit a user to specify lexical items by 
regular expressions or by explicit 
scanning code when the need arose. 
This necessitated changes in the 
interface between GLA and the rest 
of the system, which were easily 
accommodated by modifying the 
Odin derivation graph. Thus the 
new GLA provided users additional 
flexibility in describing the lexical 
properties and internal representa- 
tion of basic symbols, without re- 
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quiring them to understand the 
changes to the tool interface. 

ExperienCe with ELI 
We have used Eli extensively as a 
tool in its own development, in sup- 
port of course work, and to develop 
language processors. This experi- 
ence includes generation of proces- 
sors for normal programming lan- 
guages, for extensions to standard 
languages, and for special-purpose 
languages. In this section we pre- 
sent several case studies. Our intent 
is to demonstrate the broad appli- 
cation of Eli, give an idea of the in- 
crease in productivity over hand 
coding, and indicate the quality of 
the generated processors. 

Programming Languages 
Compilers for existing program- 
ming languages have been devel- 
oped to provide data for reliable 
performance evaluations. Four 
kinds of comparisons could be 
made with a” existing hand-coded 
compiler for the same language: 

l The size of the specifications can 
be compared to the size of the 
hand-coded source text. 
l The specification development 
effort can be compared to the de- 
velopment effort for band-coding. 
l The object code sizes can be com- 
pared. 
l The time to process a specific set 
of test programs can be compared. 

When carrying o”t such compari- 
sons, it is important to guarantee 
that the specification and the hand- 
coded compiler have exactly the 
same functionality, and that they 
“se roughly the same algorithms. 
I” this section we consider compiler 
specifications for two programming 
languages: ALGOL 60 and ICON. 
Each of these languages has a com- 
piler that is extensively described in 
literature, so that it is relatively easy 
to check for equivalent functional- 
ity. 

ALGOL 60. A compiler was con- 
structed by one graduate student as 
a class project in six weeks based on 
Randell and Russell’s Whetstone 
ALGOL [13]. He had previously 

take” the graduate compiler con- 
struction course (which was not 
based on tools) and had industrial 
compiler experience. He had stud- 
ied the ALGOL 60 report in a grad- 
uate programming languages 
course, but had no other experi- 
ence with ALGOL. Since his com- 
piler did not follow the design 
given in Randell and Russell’s book, 
because that design does not follow 
the Eli model, the six weeks in- 
cluded a complete redesign. A” 
experienced software engineer, 
who had worked with the Whet- 
stone compiler on the ICL KDFS, 
estimated that he could carry o”t a 
new implementation of Randell 
and Russell’s compiler in twelve 
weeks. 

ICON. Similarly, for our semester- 
long graduate compiler tools 
course, a translator was constructed 
for Icon [4]. This translator pro- 
duces as output intermediate code 
which is then interpreted. Of par- 
ticular concern in this project was a 
comparison between the automati- 
cally produced compilers of Eli and 
hand-written ones. For this reason, 
the Eli-produced translator was 
designed to duplicate the behavior 
of part of the standard Icon imple- 
mentation [5]. 

It is estimated that the total de- 
velopment time was about one- 
third of that which could be ex- 
pected if the translator was built 
from scratch in C. The standard 
version contains (Icon-dependent) 
modules, for example, lexical anal- 
ysis and tree construction. Since Eli 
already provides many of these 
tasks in language-independent 
modules, specifications relating to 
lexical and syntactic analysis are 
about one-third of the sire of the 
corresponding code in the standard 
version. Code size of the portions 
relating to semantic analysis and 
code generation is about the same 
in the two versions. The Eli specifi- 
cations are at a higher level, bow- 
ever, which greatly reduced the 
development time. 

Run-time comparison, using a 
large set of test programs, showed 
that the Eli-generated version is 



only about 50% slower than the 
hand-coded version. Future efforts 
will involve a more efficient attri- 

bute evaluator, which is expected to 
reduce this difference significantly 
with no change to the speciiica- 
tions. 

Programming Language 
EXtt?“SlO”S 
Eli is ideal for implementing prcx- 
essors for extensions to program- 
ming languages because it is possi- 
ble to begin with specifications that 
already generate a correct compiler 
for the base language. These speci- 
fications are much easier to modify 
than the code for an existing com- 

piler would be, because they de- 
scribe instances of the compiler 

subproblems rather than ways in 
which those subproblems were 
solved. Therefore, the designer of 
the extension needs only to change 
the description so that it iits the 
new instance of the problem engen- 
dered by the extension. 

Dino is a superset of C designed 
for writing parallel programs for 

distributed memory machines [ 14, 
151. A Dino compiler that translates 
Dino code into C code targeted for 
the Intel IPSC family of hypercubes 
has been developed using the Eli 
system. In order to save develop- 
ment time, an existing C specitica- 
tion, which was previously written 
using Eli, was augmented with the 
Dino constructs. The resulting 
specification was roughly three 

times as large as the original C spec- 
ification. The main benefit that Eli 
has supplied to the project was the 
support of a relatively high-level 
perspective on the construction of 
the compiler. This has provided the 
users of Eli two advantages over 
modifying the Portable C Compiler 
for instance. First, the time re- 
quired to understand the Eli C 
specification was much less than 

that required to understand the 
Portable C Compiler specification. 
This is quite important, since the 
implementation of the Dino modi- 
fications is very dependent on the 
compiler being modified. Second, it 
was much easier to make changes in 
the structure of the language, since 

the constructs of the Eli system hide 
a great deal of the tedium that the 
user of the Portable C Compiler is 
forced to handle, greatly aiding the 
language design process. 

Since the Dino compiler is based 
“n a fairly old C specification, it 
uses none of the more recent Eli 
library facilities such as the DDL 
compiler or OIL. Almost all of the 
compiler tasks are described by the 
attribute grammar. Compiler sup- 
port code consists of an early 
version of the Eli environment 
module, a module for doing ma- 
chine-dependent arithmetic, and 
an abstract data type used for pro- 
cessing C typpedef c”“str”cts. 

Special-Purpose Languages 
The compiler for OIL shown in 
Figure 3 was one of the Eli compo- 
“ems implemented via Eli. OIL is 
typical of the little languages that 
can provide high leverage for cer- 
tain problems. The implementation 
was carried out in about eight 
weeks by a student with little com- 
piler construction experience. 

OIL is based on the method for 
overload resolution developed for 
Ada compilers [9, 121. The OIL 
compiler produces a module that 
provides functions for operator 
identification and for determining 
coercion sequences. It also creates 
an initialized database for “se by 
those functions, and a” interface 
specification that can be included 
by any module invoking the func- 
tions. 

The specifications used to define 
the OIL compiler follow the same 
patter” as those for Minilax. They 
comprise descriptions of the nonlit- 
eral basic symbols, the phrase str”c- 
ture of an OIL specification, and 
the structure and decorations of the 
murce program tree. Values for 
s”me of the decorations are corn- 
puted by the library environment 
module, while others are computed 
by modules written in C specifically 
for this compiler. 

RedWing Specification 
and code Sizes 

By analyzing the str”ct”re of com- 
pilers such as those we have de- 

scribed, c”mm”” problems can be 
identified, their solutions studied 
and efforts can be made to produce 
standard modules which solve the 
problems in a general way. Areas 
where this has happened in the past 
include the definition table (DDL) 
and operator identification (OIL). 

The production of external 
modules for “se in individual corn- 
pilers provides an opportunity for 
similarities t” be identified and 
general additions to the Eli library 
to be designed. For example, we 
have now developed a general facil- 
ity for output-each of the compil- 
ers described here contained their 
own such modules. Rather than 
have each compiler writer code his 
or her own file management and 
output functions by hand, a library 
module can now be invoked. 

Future Work 
Hand-coded compilers often avoid 
constructing one or both of the 
trees we have discussed, or they 
write them in a linearized form to 
secondary storage. Optimizing 
compilers usually build explicit ver- 
sions of both data str”ct”res, but 
may identify common subexpres- 
sion nodes t” convert the target tree 
into a directed acyclic graph. 

Strategies that either avoid tree 
construction entirely or “se linear- 
ized versions in secondary storage 
restrict the amount of information 
available to make certain decisions. 
For example, suppose neither tree 
is built explicitly. This means that 
only information available “earlier” 
in the program can be used in mak- 
ing any decision. The str”ct”re of a 
standard Pascal program was de- 
fined specifically to avoid requiring 
a Pascal compiler to build either 
tree explicitly: All identifiers must 

,be declared before they are used, 
with the exception of the domain 
type of a pointer. (Since informa- 
tion about the domain type of a 
pointer is not needed to process 
type declarations, and the declara- 
tion must appear before the end of 
the type section in which the 
pointer is declared, the compiler’s 
constraint is met in this case as 
Well.) 
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None of the specification tech- 

niques used by Eli require that ex- 
plicit trees be built. The attribute 
grammar describes the information 
flow in terms of a tree, but it can be 
shown that if the flow has certain 
patterns, then all attribute compu- 
tation can be done during parsing. 
Other flow patterns can be realized 
by compilers that write linearized 
versions of the trees to secondary 
storage. Our current tools are able 
to give the user feedback about the 
data flow patterns in a given speci- 

fication, guiding a modification to 
satisfy any constraint that user 
wishes to place on the data flow. We 
are beginning to think about how to 
generate a procedure to carry out 
parse-time attribution in those cases 
where it is possible, and how to in- 
tegrate that procedure with the 
remainder of the generated com- 

piler. 
Eli’s open nature makes experi- 

ments with a wide variety of tools 

possible. For example, attribute- 
grammar-like techniques for de- 
scribing data flow in directed 
acyclic graphs have been reported 
in the literature [ 161. Tools for pro- 
cessing such specifications could be 
added to Eli, allowing experiments 
to test their practicality for real 
compiler generation problems. 

Conclusions 
Eli is a complete, flexible compiler 
construction system. Based on ex- 
isting tools, it is an open system that 
is able to evolve as new tools and 
techniques become available. Eli 
does not rely on any one specifica- 
tion language to describe all of the 

subproblems of compiler construe- 
tion; rather it provides a coherent 
framework in which specifications 
written in a number of languages 
are combined to describe a com- 
plete product. A simple user inter- 
face provides a uniform method for 
requesting derivations from specifi- 
cations. Such requests only involve 
product names. Eli determines the 
particular set of tool invocations on 
the basis of the state of its cache, as 
reflected in a knowledge base. 

We have used Eli to create com- 
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pilers for small, special-purpose 

languages, standard programming 
languages and extensions to exist- 
ing languages. It has improved our 

productivity and has enabled inex- 
perienced users to undertake and 
complete significant compiler proj- 
ects. We believe that Eli effectively 
addresses the problems that have 
prevented widespread use of com- 
piler construction tools. Our CUT- 
rent research program is aimed at 
further simplifying the use of Eli 
htself and improving the perfor- 
mance of the generated compilers. 

Portions of this research were 
funded by the U.S. Army Research 
Office under contract number 
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