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KEY TERMS AND DEFINITIONS

Compositionality: The principle that an object
can be defined and understood by considering
its parts individually, then relating them in a sys-
tematic way. A desirable property of a language’s
design, its semantic domain, and the expressions
it contains.

Domain Decomposition: The identification
and separation of a semantic domain into its
component subdomains and their relationships.
Enables the domain to be modeled in a structured
and modular way.

Domain Modeling: The representation of a
(decomposed) semantic domain in ametalanguage
with types and data types, forming a hierarchy of
micro DSLs related by language schemas.

Domain-Specific Embedded Language
(DSEL): A DSL defined within a metalanguage
that uses metalanguage constructs directly asDSL
syntax. Also called an internal DSL.

Deep Embedding: A technique forimplement-
ing DSELs where abstract syntax is represented
by a data type and mapped onto the semantic
domain by a valuation function.
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Language Schema: A parameterized class of
related languages, from which specific languages
can be derived by instantiation.

Language Operator: An operation that pro-
duces anew language from one or more languages
or language schemas (and possibly other argu-
ments). Language operators are the mechanisms
by which a language is incrementally extended
and built from its component parts.

Semantics-Driven Design: A language design
process that begins by identifying, decomposing,
and modeling the semantic domain of a language,
then systematically extending it with syntax.

Shallow Embedding: A technique for imple-
menting DSELs where syntax is defined by func-
tions that build semantic values directly.

Syntax-Driven Design: The traditional view
that the design of a language begins by identify-
ing its (abstract) syntax, and only later describing
its semantics.

ENDNOTES

! We cannot use the constructor name Line

since it has been used already in the Pic
data type.

2 Another strategy that is available in Haskell
specifically is to overload functions using
Haskell’s type classes to produce different
semantics (Carette et al., 2009).

3 For example, we could reuse Data.Map

from the Haskell standard libraries.

We omit years from dates just for simplicity

in this chapter.

5 Note that without an associated year value
the stream of dates is actually cyclical.
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Chapter 4

An Evaluation of a Pure
Embedded Domain-
Specific Language for
Strategic Term Rewriting

Shirren Premaratne
Macquarie University, Australia

Anthony M. Sloane
Macquarie University, Australia

Leonard G. C. Hamey
Macquarie University, Australia

ABSTRACT

Domain-specific languages are often implemented by embedding them in general-purpose program-
ming languages. The Kiama library used in this chapter for the Scala programming language contains
a rewriting component that is an embedded implementation of the Stratego term rewriting language.
The authors evaluate the trade-offs inherent in this approach and its practicality via a non-trivial case
study. An existing Stratego implementation of a compiler for the Apply image processing language
was translated into a Kiama implementation. The chapter examines the linguistic differences between
the two versions of the Stratego domain-specific language, and compares the size, speed, and memory
usage of the two Apply compiler implementations. The authors’ experience shows that the embedded
language implementation inflicts constraints that mean a precise duplication of Stratego is impossible,
but the main flavor of the language is preserved. The implementation approach allows for writing code
of similar size, but imposes a performance penalty. Nevertheless, the performance is still at a practically
useful level and scales for large inputs in the same way as the Stratego implementation.
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INTRODUCTION

One popular domain-specific language (DSL)
implementation approach is to embed the DSL
in a general-purpose host language to create an
internal language (Mernik, 2005; Fowler, 2010;
Ghosh, 2011). In this chapter we consider internal
languages where the embedding consists only
of pure DSL constructs that are written directly
using the host language and an unchanged host
language compiler performs the only compilation
or translation step. In essence, the DSL is a host
language library but the syntactic flexibility of
the host language is exploited to implement the
DSL syntax.

The embedding approach is attractive for a
number of reasons, but has associated drawbacks.
Reusing the host language compiler significantly
simplifies implementation of the DSL compared
to implementing a standalone version of the
language — all host language tools can be reused.
The main drawback is that the DSL syntax and
semantics may not be directly realizable in the
host language, resulting in compromises. Host
language tools may not present a domain-specific
view of programs, requiring the programmer to be
aware of the way in which the DSL is implemented.
Nevertheless, the pure embedding approach can
be useful, particularly where the target users are
developers who are familiar with the host language
and where there is resistance to the adoption of
new tools or build processes.

How can we evaluate the embedding approach
beyond these generic high-level considerations?
Our view is that real insight can only be gained
through case studies of DSLs of varying styles
and domains. In particular, if an external DSL has
already been designed and astandalone implemen-
tation exists, then a side-by-side comparison witha
new embedded version can be especially revealing.
Evaluating how close the internal implementation
gets to the existing external implementation pro-
vides a measure of the success of this approach. It
is not our intention to undertake a full comparison
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of the implementation techniques, but to treat the
existing external implementation as an ideal and
to evaluate the ability of the embedded approach
to reproduce that ideal.

Recently we have completed a project that
studied an embedded implementation of a stra-
tegic term rewriting DSL and compared it to an
existing implementation (Premaratne, 2011).(The
code from the project is available at https://wiki.
mgq.edu.au/display/plrg/stragma.) The Kiama
library (Sloane, 2011) contains term rewriting
features inspired by an existing external language
called Stratego (Visser,2004). Kiama isembedded
in the Scala general-purpose language (Odersky,
2008), which was chosen for its excellent support
of pattern matching, flexible syntax and power-
ful static type system. When we developed the
rewriting component of Kiama we adhered to
the Stratego design as much as was possible and
sensible, given the constraints and opportunities
provided by Scala. ‘

In this project, Stratego played the role of a
well-established external DSL that is implemented
by a compiler and Kiama played the role of an
internal implementation of that DSL. We evalu-
ated the two implementations using a non-trivial
Stratego application that one of us had developed
previously: a compiler for the Apply image pro-
cessing language (Hamey, Webb & Wu, 1987,
Hamey, 2007; Hamey & Goldrei, 2008). The
Apply compilertranslates Apply programs into C,
conducting standard semantic analysis and non-
trivial optimization along the way. We translated
the existing Stratego implementation of the Apply
compiler into Scala using the Kiama library. The
two implementations perform the same analyses
and translations and both run on the Java Virtual
Machine. Since the focus of the comparison was
the rewriting DSL, the two implementations of
Apply share a common implementation of other
passes such as parsing and pretty printing.

This chapter presents the results of the project
with a focus on the trade-offs that the embedding
approach imposes on the rewriting language and

An Evaluation of a Pure Embedded Domain-Specific Language for Strategic Term Rewriting

its implementation. We take the perspective that
the Stratego language and compiler represent
an ideal in the sense that the designer had full
freedom to vary them as desired. A comparison
with the Kiama version reveals the compromises
from that ideal that a developer has to make when
using an embedding approach. Therefore the
comparison reveals important insights intoembed-
ding in general and, more specifically, explores
Scala’s suitability as a host language. As far as
we are aware, this project is the first side-by-side
comparison of two implementations of the same
non-trivial DSL.

We do not consider other comparative dimen-
sions, such as usability orsocial and training-based
reasons for choosing one approach over the other,
since we do not have data from users other than
ourselves. Comparing the speed of development of
the embedded DSL with Stratego was not possible
since we do not have data from the Stratego devel-
opment. Nor do we consider other alternatives for
implementation of the DSL, such as embedding
it in host languages other than Scala. We focus
on the implementations that were actually used
in the case study. All of these other aspects are
interesting potential topics for future work.

Overall, we find that the embedding approach
producesa language that is very similarto the Strat-
ego language, but that compromises are required
to fit Stratego’s features into the Scala language
in a natural way. Most notably, differences in the
treatment of name binding and pattern matching
mean that the rewrites in Kiama are expressed
somewhat differently to the Stratego version.
The performance of the two implementations is
similar; the Kiama version incurs a penalty, but
notone that limits practical use, particularly since
the performance scales in the same way as the
Stratego version as inputs grow large.

The structure of the rest of the chapter is as
follows. We first discuss previous work that has
evaluated pure embedding as an approach for
building DSLs. Then we give an overview of
strategic term rewriting, Stratego, and Kiama’s

rewriting library. Next we present the methodol-
ogy we used in our comparison to ensure that
the results were meaningful. Following that is
an overview of the Apply language, a description
of the Stratego Apply compiler implementation,
and discussion of how the same compilation task
was achieved using Kiama. The last two sec-
tions contain evaluation: first a discussion of the
language-level differences between Stratego and
Kiama’s rewriting library due to the embedding
approach and the characteristics of Scala, and then
an analysis of the time and space performance of
the two Apply compilers.

We conclude with a consideration of Future
Research Directions, most notably to encourage
other researchers to conduct similar experiments
so that the research community can move towards
amore comprehensive understanding of language
embedding across a variety of domains and host
languages. A secondary benefit of our study is
that we have identified a number of areas where
Kiama’s version of strategy term rewriting is
deficient when compared to Stratego, most no-
tably support for concrete syntax, dynamic rules
and congruence operations. The Future Research
Directions section also contains a discussion of
these aspects.

BACKGROUND

Much has been written about domain-specific lan-
guagesand theirimplementation. Recentexcellent
examples are the books by Fowler and Parsons
(2010) and Ghosh (2011) that together provide
developers with a comprehensive introduction
to the motivations for DSLs and survey modern
implementation techniques, including compari-
sons with the pure embedded DSL approach that
is evaluated in this chapter. However, since the
purpose of these books is to introduce the DSL
approach and they have a great deal of ground to
cover, their examples and evaluations of any one
technique are necessarily brief.
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Many researchers have written aboutand evalu-
ated particular embedded DSLs (van Deursen;
2000). In the vast majority of these cases the DSLs
are designed from scratch to solve a particular
problem. As such, the DSLs are evaluated for
their ability to solve the problem for which they
were designed, rather than for the suitability of
the embedding approach itself. Usually the evalu-
ation of the latter occurs in the form of high-level
observations about how easy it was to develop
the DSL but with little detailed comparison to
alternative approaches.

Thus, it is rare to find a detailed, side-by-side
comparison between pure embedding and other
different DSL implementation techniques. The
closest work of which we are aware is Kosar
et al’s comparison between external DSLs and
application programming interfaces (APIs) in a
general-purpose language

(Kosar et al, 2010; Kosar et al, 2011). Their
papers report relatively small empirical studies
and show that DSLs do seem to confer a benefitin
terms of program comprehension and understand-
ing. We can get some insight into pure embed-
ding from these studies if we regard the APIs as
being embedded DSLs, but is not a clear insight.
A closer comparison is performed in Kosar et al
(2008) where a variety of DSL implementation
approaches are compared along dimensions such
as similarity to domain notation. As is common
for this kind of study, the case considered is fairly
simple, but it does point the way toward a more
comprehensive evaluation of DSL implementa-
tions.

This chapter complements the earlier work
by studying a bigger, pure embedded DSL and
a non-trivial application that uses it. Unlike the
empirical evaluations of Kosar ef al, our example
is a complete, complex program transformation
language. This complexity constrains our study
to be narrower because

itisnot feasible to build many implementations
of such a complex DSL. Also, rather than design
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a case-study DSL with the embedding approach
assumed, as is done in much of the literature, we
have built an embedded DSL to approximate an
existing external DSL. Therefore, we are evaluat-
ing how well the embedding approach can solve
a pre-defined problem. We are interested in the
technical ways in which the embedded language
and its implementation provide the same end-user
capabilities as the existing external language and
its implementation.

The rest of this section provides some back-
ground on the domain of program transformation
that is addressed by the DSL.

Strategic Term Rewriting
and Stratego

Strategic term rewriting is a formalism for specify-
ing transformations that operate on tree-structured
data (the terms) (Visser, 2005). In one common
application, the terms are parse trees of programs,
and the purpose of term rewriting is to transform
those programs into other programs. Often the
transformed programs are written in a language
that is different from that used by the original
programs. Inthis application, strategic term rewrit-
ing implements the core of a compiler for some
other DSL. This chapter concerns a compiler for
an image processing DSL.

Stratego is an external DSL for strategic term
rewriting (Visser, 2004) and the Kiama library
contains a version of Stratego as an internal Scala
DSL. This section gives a brief overview of term
rewriting in Stratego and describes how Kiama
corresponds to Stratego.

Suppose that we want to simplify constant
arithmetic expressions suchas (4 * 0) + 2.
We can write a term to represent this expression
as follows:

Add (Mul (Int(4), Int(0)), Int(2))

An Evaluation of a Pure Embedded Domain-Specific Language for Strategic Term Rewriting

A strategy in Stratego is a rewriter that can be
applied to the subject term, either succeeding
and producing a new subject term, or failing.
The simplest kind of strategy is a rule that
matches a pattern against the subject term. If
the pattern matches the rule constructs a new
term and succeeds otherwise the rule fails.

Suppose that we want to simplify our ex-
pressions by replacing multiplication of a term
by zero with zero, and by replacing addition of
zero to a term with that term. We can write these
simplification rules Mul Zero and AddZero in
Stratego as follows.

MulZero: Mul(x, Int(0)) -> Int(0)
AddZero: Add(Int(0), y) -> vy

In this syntax, the identifier gives a name to
the rule, the part before the arrow is the pattern
to be matched to a subject term, and the part after
the arrow is the replacement term.

The two rules MulZero and AddZero can
be combined into a single simplification strategy
Simplify as follows:

Simplify = try(MulZero + AddZero)

This strategy uses Stratego’s try strategy
and ‘+’ operator to combine the individual rules.
When this strategy is applied to the subject term,
it will attempt to simplify the subject term using
eithertheMul Zero or AddZero rules. Stratego
operators use the success or failure of strategies
to control the rewriting process. The ‘+’ operator
combines two strategies so that the combination
non-deterministically chooses one of the strategies
to successfully apply to the subject term; if neither
strategy succeeds, then the ‘+’ operator itself fails.

The try strategy is a higher-order strategy
that “swallows” failure. An expression try (s)
(where s is itself a strategy or rule) succeeds with
the result of s if s succeeds when it is applied to
the subject term. If s fails when applied to the

subject term then try (s) succeeds leaving the
subject term unchanged. In fact, try is defined
in terms of more primitive operations as follows:

try(s) = s <+ id

The operator ‘<+’ represents deterministic
choice. Anexpressions, <+ s, first tries strategy s,
on the subject term; if it succeeds then its result is
the new subject term. If s, fails, then s, is applied
to the original subject term and its result (success
or failure) is the result of the whole expression.
Using <+, try first tries s; if s fails, try uses
the identity strategy id tosucceed with the subject
term unchanged.

Simplify by itself is no good to us for full
simplification of a term, since it only applies its
constituent rules at the root of the term. Stratego
also provides higher-order generic traversal strate-
gies that are the building blocks of programs that
traverse into terms. For example, we may wish
to apply our Simpli fy strategy in a bottom-up
fashion to the whole term, so that simplifications
are applied within sub-terms first and the results
can then be exploited at higher levels. We can
define a strategy to perform this whole term
simplification as follows:

SimplifyAll = bottomup (Simplify)

Here, bottomup is a higher-order strategy
that expresses the bottom-up traversal pattern
without being specific about what is performed
during the traversal. bottomup is defined as
follows:

bottomup(s) = all(bottomup(s)): s

This implementation says to first recursively
process all the sub-terms of the subject term, and
then finally to apply the strategy argument s to
the subject term itself. In detail, the semicolon
operator is sequential composition. In s ; s,’, if
s,succeeds, thenitsresultis passed to s, otherwise

85



An Evaluation of a Pure Embedded Domain-Specific Language for Strategic Term Rewriting

the whole expression fails. The strategy all (s)
is a generic traversal that applies s to all of the
immediate sub-terms of the root of the subject
term. If s succeeds on all of the sub-terms, the
resulting new sub-terms are combined using the
constructor that appears at the root of the original
subject term and all (s) succeeds. If s fails on
any of the children, then all (s) fails. This is
where the try strategy in Simplify is important:
the Addzero and MulZero rules do not match
at all nodes in the tree, but try ensures that the
Simpli fy strategy succeedsatthe non-matching
nodes, preserving them unchanged. This allows
SimplifyAll to successfully process the
entire tree.

This example touches on only a few of the li-
brary strategies that Stratego offersand only shows
some of the power of this approach. The primi-
tives such as deterministic and non-deterministic
choice, sequencing, and generic traversals can be
combined togetherto yield avastarray of complex
rewriting processes. The Stratego language is a
concise notation for these processes.

Kiama

The main goal of Kiama’s rewriting library is to
make the power of strategic term rewriting acces-
sible to mainstream programmers. Using Stratego
requires installation of a new toolset, conversion
of data into the format that Stratego needs, and
so on. In comparison, Kiama is a Scala library
so any Scala program can use its facilities ina
lightweight fashion with no new tools or data
conversion being required.

When we developed Kiama’s rewriting library,
we tried to be faithful to the Stratego language as
much as was possible and as much as was sensible.
Kiama is constrained by Scala, so some things
that Stratego offers are not possible due to clashes
with Scala syntax and semantics. Others are not
sensible because they conflict with the way that
Scala programmers normaily construct programs.
We compare the languages in detail later in the
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chapter. For now, we illustrate Kiama by showing
how the arithmetic simplification example above
would be written in this embedded DSL.

The basic rulesMul Zero and AddZero can
be written in Scala using Kiama’s rule method.
For example, MulZero would be

val MulZero =
rule {
case Mul(x, Int(0)) => Int(0)
}

The only part of this rule definition that is spe-
cificto Kiamaisthe rule method; all other syntax
and semantics is standard Scala. The argument to
rule is a function literal, in this case standing
for a partial function that performs the pattern
match and, if the match is successful, returns
the simplification. Kiama benefits greatly from
the high level of support for pattern fnatching in
Scala, but there are some consequené“es of using
that support, which we discuss later.

In Kiama, strategies are implemented as
functions that take the subject term and return a
Scala option value to indicate success or failure.
Option values come in two varieties: None that
represents an optional value that is not present,
and Some (v) that represents a value v that is
present. A Kiama strategy that fails returns None,
and one that succeeds returns Some (v) where v
is the new value of the subject term.

rule lifts its partial function argument to this
option encoding. If the partial function is defined
on the current subject term, then it is applied
and the function result is wrapped in a Some
to indicate success and the new subject term. If
the partial function is not defined on the subject
term, then None is returned to indicate that the
rule has failed.

Returning to the example, Simplify can
be defined using Kiama in a similar way to the
Stratego definition, except that try is a Scala
keyword, so Kiama uses attempt instead as
demonstrated in Box 1.
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attempt is defined in a similar fashion to
try in Stratego, except that more type informa-
tion must be provided as presented in Box 2.

The argument s is passed by name (indicated
by the prefix double arrow) to avoid premature
evaluation of recursive strategies. 1d is the iden-
tity strategy as in Stratego. Thus,at tempt returns
a strategy that first tries s and, if that fails, leaves
the subject term unchanged.

Inthese Kiama definitions weare using ‘+’and
‘<+’as ifthey were pre-defined operators, but they
are actually methods of Kiama’s Strategy class.
Scala allows the period of a method call 0. m (a)
to be omitted when there is a single argument a, so
it can be written 0 m a. Scala understands s <+
idtobe s.<+ (id), invoking the ‘<+’ method
of the Strategy class.

The implementation of ‘<+’ is straight-for-
ward. It returns a strategy that first applies the
left operand of ‘<+’ to the subject term. If that
application returns Some (v) for some value v,
then the left operand has succeeded and that op-
tion becomes the result of the whole operation. If
the application of the left operand returns None,
then it has failed, so the strategy produced by
‘<+’ then applies the right operand of ‘<+’ to
the subject term, returning whatever it produces.
Similarapproaches are used to define other primi-
tive operations.

Box 1.

val Simplify = attempt(MulZero + AddZero)

Box 2.

def attempt(s: => Strategy): Strategy =
Box 3.

val SimplifyAll = bottomup(Simplify)

def bottomup(s: => Strategy): Strategy
all(bottomup(s)) <* s

In the example, SimplifyAll and bot-
tomup can be defined easily using Kiama as
presented in Box 3.

In the bottomup definition, the Kiama
method ‘<*’ is used for sequential composition
whereas ‘;’ is used in Stratego. The syntactic
change is necessary because Scala uses the semi-
colon character as a statement terminator and does
not allow us to reuse it as a method name.

This simple example shows that the main
aspects of the Stratego language and Stratego
programs can be expressed in a natural way in
Kiama and Scala. Some compromises are already
evident: attempt replacing try and ‘<*’
replacing ¢;’, and additional type information
must be provided for Kiama. We will compare
the languages in more detail later in the chapter.

Amajoradvantage oftheembeddingapproach
is the simplicity of the implementation of the
rewriting language. The strategy libraries in Strat-
ego and Kiama are of similar size since they use
a similar syntax, but the core implementation of
Kiama is smaller, only around 650 lines of mostly
straightforward Scala code, excluding comments
and blank lines. In contrast, Stratego has been
bootstrapped so that its implementation consists
of over 2000 lines of Stratego that produce Java
output. (Note thatthe implementation language for

the rewriting language (Scala or Java) is unrelated

s <+ id
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to the term language actually manipulated by a
rewriting program.)

The differing implementation sizes are likely to
have an impact on reliability, since we can expect
that debugging and maintaining a small library
is easier than doing the same for a non-trivial
compiler. The Kiama implementation delegates a
larger proportion of its functionality to the Scala
compiler than the Stratego one does to the Java
compiler. A comparison of reliability over a long
period of time would be interesting but we do not
have this data.

METHODOLOGY

The general question that we are investigating
in this case study is whether embedding is a
reasonable alternative to building an external
domain-specific language implementation. Our
methodology separates this question into two
parts: one comparing the languages and one
comparing their implementations. This section
provides an overview of our approach to these
sub-questions; we consider their answers in detail
later in the chapter.

Our approach is to base our comparisons on a
case study of a non-trivial application written in
the domain-specific language: a compiler for the
Apply image processing language designed and
implemented in Stratego by one of us (Hamey,
2007; Hamey & Goldrei, 2008), which we will
refertoas Stratego-Apply. Another of us translated
Stratego-Apply into Kiama as far as was possible
using a direct translation to produce Kiama-Apply
(Premaratne, 2011).

Since we are only interested in comparing the
rewriting language implementations, our compari-
son considers only the core phases of the Apply
compilers that are implemented by Stratego and
Kiama. Phases such as parsing the input text and
pretty printing the output textare notimplemented
by the term rewriting DSL. These phases are
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shared between the two implementations and are
not included in any measurements.

Inboth implementations, a parser that is gener-
ated from a specification developed for the original
external implementation analyzes the input text.
This parser produces an ATerm, a data representa-
tion specifically designed for term rewriting (van
denBrand, 2000; van den Brand, 2007). The Kiama
implementation further translates that ATerm into
a native Scala data structure. In both versions,
the core rewriting phases transform the term that
represents the input text into a term that represents
the target C program. Kiama-Apply then translates
the Scala term back to ATerm format. Finally, both
implementations used a shared pretty-printer to
convert the final ATerm into the target code. We
required that Kiama-Apply produce exactly the
same target ATerms as Stratego-Apply for all
available input texts, so that we can be confident
that the same output text is producedq by the two
implementations. b

A comparison of external and internal lan-
guages must consider both syntax and semantics,
so we further sub-divide along those lines. The
syntactic constructs that are possible in an external
implementation are only limited by the imagina-
tion of the language designer and the parsing
method being used. An internal implementation
must reuse the syntax of the host language and
take advantage of any available syntax extension
facilities. Therefore an internal implementation
of an existing external language is unlikely to
be able to duplicate the external syntax exactly.
The question becomes: how close can we get?
We consider this question by examining the main
language constructs as they are used in the Apply
case study.

Similar to syntax, the semantics of an internal
language is bound by the semantics of the host
language. The semantics of an external language
isunrestricted in the sense that the implementation
is able to perform any interpretation or translation
that is needed. The degree to which the internal
language can faithfully reproduce the semantics
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of the existing external language depends on the
similarity between the semantic models of the
external language and host language. While in
theory it is possible to reproduce the semantics
of any external language in any Turing-complete
host language, an awkward embedding due to
widely differing semantic models is likely to be
unsatisfactory. Again, we use the Apply case study
code to examine these differences.

Assuming that a satisfactory syntactic and
semantic correspondence can be achieved, it
remains to compare the specific implementa-
tions of the Apply compiler. We consider the
size of programs written in the rewriting DSL
as a measure of implementation difficulty and
the time-space performance of the implemented
Apply compiler as a measure of usability. While
a side-by-side comparison can only provide ap-
proximate estimates of these measures, it is suf-
ficientto demonstrate the practicality or otherwise
of the embedding approach. We expect that a
custom external language implementation should
outperform an internal one due to the opportunity
for domain-specific optimization, particularly
optimization of data representation. Somewhat
balancing this advantage is the likelihood that the
host language implementation will have been the
focus of much more effort and general-purpose
optimization than the implementation of the ex-
ternal language.

APPLY AND ITS COMPILERS

Apply isalanguage for expressing image process-
ing operations. It has two main goals: efficient
implementation and portability. Apply programs
are portable across uniprocessor and parallel
architectures and across different image data
representations, while maintaining an efficiency
that equals or exceeds good quality hand-written
code (Hamey, 2007). This section provides a
brief overview of Apply and its implementation
sufficient to demonstrate the non-trivial nature of

the domain and the processing performed by the
Apply compiler. We skim over many details since
they are not necessary to understand the rest of
the chapter. A reader who wishes to learn more
about image processing with Apply is directed to
Hamey (2007) in the first instance.

Apply uses a processing model in which the
programmer writes a computation for a single
pixel location and the compiler generates code
that performs the computation on all of the pixels
in an image. This programming model allows the
compiler to generate efficient code for a wide
variety of architectures and to exploit parallelism
since the pixel computations are independent.

As an example, consider the typical small Ap-
ply program in Figure 1 which implements part
of a standard Sobel edge detector computation to
identify boundaries between regions in an image.
Syntactically, Apply is based on a 1980s version
of the Ada programming language (Ada, 1982).
This Sobel procedure considers a window into
the image centered on a given pixel and extend-
ing one pixel outward in each direction (from
argument in line 1). The output is a single byte
that becomes the new intensity of the pixel un-
der consideration (to argument in line 2). The
algorithm combines the intensities of six of the
neighbors of the pixel under consideration to get
a new intensity for that pixel (lines 6 and 7). To
keep the value in range it then takes the absolute
value (line 8) and range limits it to fit into a byte
(line 9). Finally, it returns the result (line 10). Of
course, the pixels at the edge of the image do not
have all of the six neighbors that are referenced
by the procedure. The border keyword on the
input image window (line 1) specifies what hap-
pens when the computation attempts to access a
pixel that falls outside the input image bounds.
In this example, the constant value 0 is used for
any such pixel locations.

Apply programs are portable to different target
environments, including different image data
structures, alternative target languages and dif-
ferent parallel programming methodologies. To
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Figure 1. A simple Apply program: Partial Sobel edge detection

procedure sobel{(from: in window (-1..1, -1..1) of byte border 0

provide this level of portability, the Stratego-
Apply compiler is divided into phases (Figure 2).
A specific intermediate phase (Environment) is
used to adapt the Apply program to the target
environment; replacing this phase with adifferent
module will target the Apply compiler to a dif-
ferent environment. Similarly, the final compiler
phases (C Language and Pretty-print) can be re-
placed to adapt the compiler to different target
languages.

The Desugar phase is a small component of
the compiler that performs some initial transfor-
mations to simplify the structure of the Abstract
Syntax Tree (AST) for subsequent processing.
For example, Desugar converts a list of declared
variables that are associated with a single type
declaration into a list of variables each of which
has its own type declaration.

Figure 2. The phases of the Apply compilers

De-sugar

2 to: out window of byte)

3 is

4 X : integer;

5 begin

6 x := from(-1,-1) + 2 * from(-1,0) + from(-1,1)
7 - from(1l,-1) - 2 * from(1,0) - from(1l,1);
8 if x < 0 then x := -x; end if;

9 if x > 255 then x := 255; end if;
10 to = x;
11 end sobel;

The Optimize phase isasignificantcomponent
of the compiler that is responsible for a large
portion of the transformation of the program.
This phase performs both constant propagation
optimizations, where expressions whose values
are statically known to be constant are replaced
by those constants, and constraint propagation
optimizations, where statically known constraints
on the values of variables are used to simplify
code that uses those variables. The latter optimi-
zations are particularly important for improving
the generated code, particularly when constraints
on loop indices are used to eliminate unnecessary
bounds checks on image pixel accesses. These
optimizations have a very significant effect on
the execution speed of the generated code.

The Do-Apply phase prepares the Apply
program for the Environment phase by inserting
a placeholder for the image processing looping

Optimize

C Language
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structure and associating more type information
with variables. These transformations make it
easierto write the Environment phase for different
target environments.

The Environment phase uses the type infor-
mation inserted by Do-Apply to generate the
pixel accesses that are appropriate to the target
environment, and to implement the image border
handling (i.e., the special cases for pixels that
occur at the border of an image and therefore do
not have a full set of neighbors). Environment
also inserts the loops that actually traverse the
image. In the Apply compiler used in this paper,
the Environment phase supports a uniprocessor
implementation with images stored as matrices
of pixels. Even in this simple target environ-
ment, Apply modules significantly outperform
hand-written code because of the sophisticated
looping structures and optimizations employed
by the Apply compiler (Hamey, 2007).

Both of the Desugar and Optimize phases are
performed first on the initial Apply program and
then repeated after the Environment phase. This
allows the Environment phase to be written with
the full power and optimization capabilities of the
Apply language. After the second optimization
phase has run, the final two phases (C Language
and Pretty Printing) translate the intermediate
representation into an abstract syntax tree repre-
senting the generated C program, and print that
tree to obtain the C program text, respectively.

To demonstrate an intermediate stage of pro-
gram transformation and illustrate the complexity
of the transformations, Figure 3 presents a pretty
print of the AST for the Sobel program (Figure
1) after the Environment phase and before the
second Optimize phase. (Some details have been
omitted and the code has been reformatted slightly
to keep Figure 3 as small as possible. See Hamey
(2007) for a full description.) We use an extended
concrete syntax to represent structures that are not
part of the Apply language, allowing the compiler
writer to express transformations using Stratego’s
concrete syntax capability. The extended syntax is

identified by special tokens that commence with
the @’ symbol. In Figure 3, the notation ‘@:=’
represents a C-style assignmentand ‘@ (...) "rep-
resents array subscripting. In Apply, as in Ada, the
same syntax is used for function calls and array
subscripts, so the extended syntax is required to
differentiate array subscripts from function calls.

The mostobvious change in Figure 3 compared
to Figure 1 is the expansion of the code. In par-
ticular, the Environment phase has embedded the
Apply function body (lines 6-10 of Figure 1) into
two loop blocks — the first loop block (lines 8-23
of Figure 3) processes pixels that are close to the
edge ofthe image, explicitly modifyingthe col-
umn index variable to skip over the center of the
image (lines 17-21). The second loop block (lines
24-32) processes the middle region of the image
where the pixels that are being accessed fall en-
tirely withinthe image. Border handling is required
in the first loop block and implemented using
inline if constructs (@1f extended syntax) to
compare the array subscripts against the image
bounds and return the border value 0 for out-of-
bound accesses (lines 12 and 13). The second loop
block does not require border handling, but the
Environment phase uses the same implementation
code and relies on the subsequent Optimize phase
to eliminate the unnecessary bounds checks using
constraints on the loop index variables. This
optimized two-loop structure greatly improves
execution speed compared to a structure where a
single loop block processes the entire image and
the image bounds are checked for every pixel
access.

Figure 3 also demonstrates the Apply assert
statement which provides the constraints for op-
timization (lines 10, 11, 14, 15,28 and 29). The @
cfor loop(line9)isextended syntax foraC-style
forloop;the assert statements within itinform
the compiler of the range constraints for the row
and column loop index variables. The Optimize
phase automatically generates similar constraints
from Apply-language conditional and looping
structures, and uses the constraints to optimize
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Figure 3. Sobel Apply program after Environment stage

procedure sobel (from : @in array () of byte border 0,

is

to : Qout array () of byte,
height, width : in integer)

row, column, app index, app_size : integer;

1
2
3
4
5 % : integer;
6
7
8

begin
for row in 0..height - 1 loop

9 @cfor column @:= 0; column <= width - 1; loop

10 assert column >= 0 and column <= width - 1;:
11 assert row >= 0 and row <= height - 1;
12 X 1= Qif (row >= - -1 and row < height - -1 and column >= - -1 and
13 column < width - -1, from @((row + -1) * width + column + -1), 0) +
14 if x < 0 then assert x < 0; x := - x; end if;

15 if x > 255 then assert x > 255; x := 255; end if;

16 to @(row * width + column) := Xx;

17 if column = - -1 - 1 and row >= - -1 and row < height - 1 then

18 column := column + width - 1 + -1 + 1;

19 else
20 column := column + 1;

21 end if;

22 end loop;

23 end loop;
24 for row in - -1..height - 1 - 1 loop

25 for column in - -1..width - 1 - 1 loop

26 X := Qif (row >= - -1 and row < height - -1 and column >= - -1 and

27 column < width - -1, from @((row + -1) * width + column -1y, 0) +
28 if x < 0 then assert x < 0; x t= - x; end if;

29 if x > 255 then assert x > 255; x := 255; end if;

30 to Q@(row * width + column) := X;

31 end loop;

32 end loop;
33 end sobel;

the code. In this example, the constraints gener-
ated from the second looping block are used later
to eliminate the inline if constructs, resulting in
efficient C code where the second looping block
performs no bounds checks on pixel accesses.

Kiama-Apply

Each Stratego- Apply module was directly trans-
lated to a Scala class to construct Kiama-Apply.

The aim was to measure the effectiveness of
the embedding method, not necessarily measure
the best possible Scala implementation. There-
fore, the strategies and rules were translated as
directly as possible into equivalent Scala code
that uses Kiama.
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We will see in the Language Comparison sec-
tion that some forms of binding through pattern
matching in Stratego are hard to duplicate exactly
in Scalasince pattern matching cannot be separated
from the actions carried out aftera pattern matches.
Therefore, in some cases, we used more idiomatic
Scala rather than use a convoluted approach to
mimic the Stratego code. For example, Stratego
conditional choice expressions were often replaced
with a sequence of pattern matching cases, and
pattern guards were sometimes used to express
constraints that would normally be handled in
Stratego by side-conditions expressed using the
where strategy.

Some Stratego library strategies that were
used in Stratego-Apply but are not present in the
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Kiama library were written and included in the
Kiama-Apply support module. Also, the Envi-
ronment stage of Stratego-Apply makes heavy
use of concrete syntax to express patterns and
terms, instead of writing them in prefix notation
(Bravenboer, 2008).In some places, we developed
new infix operators to make it easier to compose
code fragments, in lieu of proper concrete syntax
support.

We did not spend much time optimizing the
Scala code to get the best performance. However,
we did do some profiling to remove obvious hot
spots. This approach is justified since we can as-
sume that Stratego has had some basic performance
optimization over its years of existence, but we
have no reason to believe that its performance is
as good as it can get. Of course, any performance
measurements from this kind of comparison
should be taken as indicative of the particular case
being measured, and not necessarily representa-
tive of general performance. For this reason in
the Implementation Comparison section we are
mainly interested in trends that show performance
changes as problem size increases, rather than in
absolute numbers.

LANGUAGE COMPARISON

We now turn to a comparison of the two rewriting
languages based on our experiences developing
the two Apply compilers. As discussed earlier,
we regard Stratego as an ideal and Kiama’s re-
writing library as an approximation to that ideal.
The designer of Stratego had complete freedom
when designing the syntax and semantics of the
language. In Kiama we were constrained both by
having Stratego as a target and by using Scala as
the host language. What is the effect of this re-
duced flexibility? This section discusses the main
differences between Stratego and Kiama’s version
of the DSL, identifying aspects of syntax, name
binding, typing, and domain focus as key areas.
We also identify specific features of Scala that

enhance Kiama’s ability to approximate Stratego,
particularly its syntactic flexibility.

Expressions

Stratego has a rich expression language for de-
scribing strategies. As we saw in the arithmetic
simplification example earlier, Kiama is able to
closely approximate both the syntax and seman-
tics of the strategy language. Scala is extremely
helpful: the ability to use arbitrary characters in
method names and to omit the period and paren-
theses in method calls means that Stratego’s syntax
can be duplicated almost exactly. Many general-
purpose languages are less helpful, permitting only
pre-defined operators to be overloaded or even
restricting the library interface to conventional
function-call syntax.

Even with this substantial help, one Stratego
operator did require more thought. The ternary
guarded deterministic choice operator, written s,
<s, +s,, is actually more primitive than the ‘<+’
operator which we saw earlier. s, < s, + s, first
applies s, and if s, succeeds, then applies s, to the
result of s ; if s, fails, s, is applied to the original
subject term. s, <+ s, is therefore just syntactic
sugar for s, < id + s,.

Scala provides no direct assistance for ter-
nary or higher-arity operators. Kiama’s solution,
conceived by our colleague Lennart Kats, is to
define the ‘+’ operator to play two roles. When
the expression s, + s, is used as a strategy it has
the expected non-deterministic choice semantics;
when it is used as the second argument of the ‘<’
binary operator (i.e., as s, < (s, + s,)) it simply
actsasatupletoholdthes, ands, strategies foruse
by the guarded choice. Scala defines ‘+’ to have
a higher precedence than ‘<’, so the parentheses
can be omitted.

The other main commonly used syntactic
construct in Stratego expressions is the functional
notation used in strategy definitions suchasbot -
tomup. Thisnotation hasadirectanalogin Scala’s
method call syntax, as shown in earlier examples.
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Kiama extends Stratego to some extent. For
example, in Kiama, any term can be used as a
strategy, with the meaning that the current subject
term is discarded and replaced by the given term.
This feature is the counterpart to Stratego’s explicit
exclamation mark build operator. Such a strategy
always succeeds. Kiama implements this kind of
conversion using Scala’s user-defined implicit
operations. If the Scala compiler determines that
a value of type U is required in some context, but
the value provided is of type T, then it will look
for an operation of type T => U that is marked
with the imp1icit keyword.Ifsuchan operation
is found, the compiler inserts a call to it to make
the expression type correct. This facility means
that the Scala type system can be extended with
domain-specific conversions. Kiama terms can
be used as strategies because there is an implicit
operation that converts a term into a rule that
matches anything and returns the term.

Binding Constructs

An important way in which external DSLs and
internal DSLs often differ is in the way that they
handle binding. Names are routinely bound to
expressions and used elsewhere in a DSL pro-
gram. External DSLs frequently have bindingand
scoping constructs that are non-standard, so it is
not always possible to imitate them exactly in an
internal language. The internal language must live
with the binding constructs of the host language
and the rules that govern their use.

Stratego has two main binding constructs:
one for rules and one for strategies, as illustrated
earlier in the Background section. Kiama uses
Scala’s value and method definition constructs to
handle these two cases. Rules are typically defined
as values; the availability of lazy values and the
fact that Kiama’s methods take their arguments
by name enable recursive rules to be defined.
Higher-order strategies are defined as methods
that instantiate a strategy with arguments, with
recursion coming for free.
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A Stratego rule is syntactic sugar for a strat-
egy that matches a pattern and, if the match suc-
ceeds, builds a new term, possibly using values
that were bound during pattern matching. For
example, a basic rule of the form name : p, —>
P, is equivalent to the strategy definition name
=2 p,; ! p, where the question mark indicates
a match of pattern p, and the exclamation mark
indicates a build using pattern p,. Implicit in the
rule definition is that any free variables of p, are
bound in a new local scope associated with the
rule. This translation is generalized when the rule
has arguments or when side conditions are placed
on the matching process.

Kiama, on the other hand, reuses Scala’s pat-
tern matching facilities. Therefore a pattern match
cannot be regarded as a primitive operation in the
same way as in Stratego. A basic rule in Kiama is
implemented by a value that is bound to the result
of the rule method:

val nmame = rule { case p, => p, }

Therefore the match and the build are neces-
sarily combined in Kiama. In practice, the same
rules can be expressed, but the Kiama version is
usually more verbose since there is no shorthand
for matching.

Stratego’s rule binding construct uses im-
plicit composition: when presented with more
than one rule definition with the same name, the
rule bodies are combined using a deterministic
choice operator to form a single rule definition
that tries each body in turn until one succeeds or
the rules are exhausted. More generally, implicit
composition is when a name is used more than
once to denote pieces of the definition of some
entity, not different entities. It is frequently used
in external DSLs to save the programmer from
having to explicitly write out the composition
operation. However, implicit composition is hard
to realize in an internal language since general-
purpose languages typically do not provide it as
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a primitive and there is no opportunity to collect
the individual definitions.

Acommon problem with implicit composition
is that the order of composition must be precisely
defined, or it must be left undefined and cannot be
relied upon by the programmer. Stratego chooses
the latter approach which means that problems
can occur if the patterns of the individual rules
overlap. Scaladoes nothave implicit composition
for value or method definitions, so Kiama users
must explicitly combine their rules, either in a
single pattern-matching construct or by using an
explicit choice operator.

Apart from pattern matching, Stratego’s other
binding facilities can be achieved in Kiama using
normal Scala bindings. Stratego has an explicit
scope operator, written using braces. New scopes
can be introduced so that names bound outside
are hidden. For example, the construct {x: s}
introduces a scope that hides any existing bind-
ing of x during the application of the strategy s.
Kiama uses normal Scala scoping mechanisms,
including local blocks, so there is no need for
another scoping construct. Local bindings in rule
or strategy definitions take the place of Stratego’s
let construct. Stratego’s strategy definitions syn-
tactically differentiate between arguments that
are terms and those that are strategies. No such
distinction is needed in Kiama since the argu-
ment’s type controls how it can be used. Finally,
Stratego has a module system that is subsumed
by Scala’s extensive features for modularity and
composition.

Semantics

Asmentioned earlier, Stratego has asimple success
or failure semantics for strategy application. The
composition operations use the success or failure
of component strategies to control subsequent
strategy invocations. Kiama encodes success or
failure as a simple option value, so it is easy to
implement the composition operations.

Kiama distinguishes between rules and strat-
egies more than Stratego, because of its use of
Scala function literals to define the pattern match-
ing inherent in the bodies of rules. Therefore,
Kiama has additional constructs to enable rules
and strategies to be combined in ways that are
more natural in Stratego’s unified approach. For
example, Kiama provides a rulefs method that
is analogous to rule butinstead of the argument
function returning a term, it returns a strategy.

The general form of Stratego’s rule constructin-
corporates side-conditions expressed inawhere
clause. Arule p, > p, where s is equivalent to
? p,; where (s); !p,, with where (s) being
equivalentto {x: 2x; s; !x}, wherex is free in
s. By thisdefinition,where (s) appliesstrategy s
to the subject term, discarding any changes made
by s to the subject term but retaining the success
or failure and also retaining any variable bind-
ings effected in 5. Thus, s may be used to bind
variables that can be used in p, (but notinp ). The
corresponding construct in Kiama is more limited
since its bindings must obey the lexical nesting
rules of Scala. Hence, in the Kiama version of a
rule with a where clause the pattern matching
in s must be moved so that it is nested within the
right-hand side of the case that is executed after
a successful match of p . In that position the
bindings from s can be used by subsequent term
construction in p,.

Types

Stratego and Kiama differ significantly in the way
that they approach typing issues. The types of the
structures operated on by Stratego programs are
expressed by signatures that specify the available
constructors, their arities, and the types of their
children. Stratego statically verifies that the arities
are respected within rules and strategies, but does
not require that the types of sub-terms match the
types specified in the constructor definitions. The
Stratego-Apply compiler takes advantage of this

95



An Evaluation of a Pure Embedded Domain-Specific Language for Strategic Term Rewriting

flexibility in a number of ways. For example, the
signature of the term that represents the input text
contains some anonymous constructors, which
means that an implicit conversion of type may be
performed when terms are built. Stratego-Apply
also constructs terms that mix source and target
constructs (e.g., Apply statements and C state-
ments). In the Stratego/XT system, a separate
program can be used to verify that a particular
term matches a given signature.

In contrast, Kiama terms must be correctly
typed at all times. Therefore the term signature
is extended in Kiama-Apply to name anonymous
constructors and to insert applications of them at
appropriate places when the initial Scala value is
constructed. Transformations that mix syntaxes
require a common super type for the terms from
the two languages that are to be mixed. As a result
of these effects of stronger typing, the strategies
are a bit longer in Kiama-Apply than in Stratego-
Apply. However, in the Kiama version the Scala
compiler is able to check that the terms being
constructed are correctly typed, so Kiama is more
statically type safe than Stratego.

Beyond their types, the representation of the
terms is also a major difference. Stratego oper-
ates on terms implemented by the ATerm library.
ATerms are designed specifically for term re-
writing and are optimized to reduce duplication.
Kiama terms are instances of Scala case classes
(Odersky 2008, Chapter 15); in other words,
they are standard Scala objects with some extra
compiler-provided support for construction and
pattern matching. Therefore, Kiama gains none

of the benefits of using a representation designed
for the rewriting domain, but Kiama terms can be
used by other Scala code in a natural way.

Typing issues also arise for strate gies. Stratego
strategies are indistinguishable by type and Kiama
follows this lead. This design limits the static
checking that can be performed. For example, it
is not possible to statically determine thats,; s,
willalways fail by proving that the terms produced
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by s, are not acceptable to s,. In both languages,
such errors can only be detected through testing.

Breaking Out of the Domain

A major motivation for DSLs is to provide a
restricted context in which a specific kind of
problem can be solved. By keeping the number of
constructs small, limiting the ways in which they
can be combined, and defining a simple semantics,
a DSL can enforce a discipline over development
that helps to control application complexity and
enables domain-specific optimizations. However,
a DSL can also be seen as a straightjacket that
forces all problems to be considered from its
limited viewpoint(Mernik, 2005). Some problems
may be impossible or inconvenient to solve using
just the DSL.

Considering the Stratego DSL, we can ask
whether it is natural to view all tragsformation
problems or parts thereof as instances of the
application of strategies to terms. For example,
consider a problem that requires numeric data to
be manipulated. The Stratego library provides
strategies such as add which matches a tuple of
values and adds them together if they are num-
bers. In effect, addition is lifted to the strategy
domain. It is arguably more natural to just access
two integers in a term, add them to gether and use
the result to construct a new term. In a statically
typed, internal DSL with access to host language
arithmetic operations, this addition is easy and
safe to use.

Another example of the power that can be
achieved by an internal versionofa DSL breaking
outofthe problem domain concerns complex data
structures. In Stratego we can represent arbitrary
data structures as terms, but it is common to want
to reuse more standard ones such as lists, sets, or
hash tables. Stratego provides syntactic sugar for
list pattern matching and construction, but these
operations still live in the rewriting world. Opera-
tions such as mapping over, filtering, or sorting

a list are written as strategies. Sets are encoded
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as lists. Keeping within the strategic rewriting
domain is attractive from a purity perspective,
but is not a particularly natural way to think about
these common data structures and operations on
them. Infact, Stratego doesn’t stay pure forall data
structures; hash tables are provided as primitive
values and their operations are defined outside
the rewriting domain.

In contrast, Kiama’s version of the DSL focuses

entirely on the core rewriting problem domain and
does notattempt to import data structures into that
domain. Accordingly, the DSL is more lightweight
and easier for a Scala programmer to pick up than
if a new encoding of data structures had to be
learned. For example, Scala collections can be
intermixed freely with problem-specific terms.
All rewriting operations are agnostic to the type
of structure that is being processed. Operations
such as sorting can be performed directly on the
data structures rather than having to be expressed
as rewrite rules. Data structures can also be used
in rewriting operations without requiring them
to be part of the subject term. For example, in
the Apply context it could be useful to compute
lookup tables that are accessed by rewrites during
analysis and optimization.

Summary

Overall, Kiama’s rewriting DSL syntax and se-
mantics are quite close to Stratego’s. Some Scala
features, most notably pattern matching, user-
defined infix operators and implicit conversion
allow Kiama to closely approximate the syntax
of Stratego rules and strategy definitions. The
semantics of strategy evaluation was easily real-
ized by the Kiama version and integrated nicely
with Scala partial functions. The main semantic
alteration was the inability to separate the build
and match operations as in Stratego, since pattern
matching in Scala is integrated with the specifica-
tion of the action to take when a pattern matches.
This change required some rephrasing of rewrites
in the Kiama-Apply compiler. Scala’s stronger

typing also forced some changes, most notably by
requiring terms to be properly typed. As expected,
many features of Stratego, including definition
syntax and modularity support, required little
special treatment in Kiama since they come for
free with Scala. The main exception was the in-
ability of Kiama definitions to implicitly compose
since Scala composition is explicit. The Kiama
version was also able to avoid explicit support for
auxiliary data structures such as lists and maps
since these are available in Scala.

One aspectof language embedding that was not
explicitly used inthe Kiama-Apply compiler, but is
worth mentioning, is the opportunity for language
extension. It is easy for a programmer to add new
primitivesto the rewriting language since they are
just normal Scala definitions. Extending Stratego
would require adding new syntax definitions,
semantic checks and translations to its compiler,
a much bigger undertaking. On the other hand,
perhaps the ability to extend the language is not
desirable, since arbitrary extensions can obscure
the meaning of a program.

IMPLEMENTATION COMPARISON

Having discussed linguistic differences, we now
considerthetwo Apply compilerimplementations.
We discuss the size of the two implementations,
as well as compare their run-time performance in
terms of speed and memory usage.

It is important to realize that our aim is not
to conduct a detailed low-level performance
comparison of the two implementations. Such a
comparison is largely meaningless for analyzing
the practicality of embedding, since so much of the
performance is influenced by the implementations
of the Java and Scala compilers and the optimiza-
tions performed by the Java run-time. Also, while
neither of the implementations exhibits major
bottlenecks, both could be further optimized, and
that would change any detailed measurements.
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Instead, our study aims to determine whether
the embedding approach is practical by comparing
it with the external implementation on as level a
playing field as possible. We are concerned with
overall trends rather than low-level details. In
particular, we are interested in scalability. Internal
DSLs often perform well enough for small pro-
grams but cope less well with large ones, since
they don’t have the benefit of domain-specific
optimization.

Experimental Setup

We compare the implementations running on the
Java Virtual Machine (JVM) in byte-code inter-
pretation mode. Table 1 summarizes the software
and hardware versions used in the experiments.

Stratego has a native compiler (via C), but
Scala’s main implementation is for the JVM, so
we use the Stratego to Java compiler, and the Java
version of the ATerm library. The Java version of
Stratego is younger than the native code imple-
mentation but it is used extensively in the Spoo-
fax Language Workbench (Kats, 2010) so its
performance is sufficiently optimized to provide
a good baseline.

Performance metrics were captured using
YourKit, a professional profiling tool (YourKit,
2011). This profiler supports accurate instru-
mentation through the use of the JVMTI API. Of
the metrics captured, our interest is in the CPU
processing time and memory requirements to
complete a syntax tree rewrite. We report CPU

Table 1. Software and hardware versions used in
the experiments

Stratego/XT 0.17 (Java backend)

Kiama 1.2 with Scala 2.9.1

Java - 1.6 (build 26, 64-bit)

YourKit 10.0.0

Experimental Quad-Core Intel Xeon 2.66, 10GB
machine memory, Mac OS X 10.7.1
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time instead of wall clock time because CPU time
measurements are usually more accurate.

Memory was measured by the program’s
consumption of the JVM heap; specifically, we
calculated the retained size of the applications
object graph with the class loader as the root
object. The retained size is a measure of both
strong references and weak references; unreach-
able objects and objects on the finalization queue
are not included in the byte count.

Any good JVM implementation comes with
various optimizations builtin. Byte-code interpre-
tation mode was invoked using the —Xint flag
so that the measurements are not influenced by
optimization opportunities or overhead of just-
in-time compilation.

Any measurement will include some pertur-
bation due to fluctuations in the measurement
environment. To minimize the impact of such
variations each test was run a few hungdred times
from which a statistical average was obtained. For
brevity only the averages are presented.

Code Size

Table 2 shows that the programs of the Apply
language compiler are not trivial by listing the
non-blank, non-commented line counts for the
individual compiler phases and other categories
of code. The Support category includes code for
tasks not directly related to rewriting, such as
command-line processing. Most Kiama-Apply
phases are larger than their Stratego-Apply coun-
terparts. There are two to three lines of Scala code
for each Stratego one line rule due mostly to the
coding style, lack of concrete syntax, and extra
code required to maintain strong typing guaran-
tees. A small extra amount of code is present in
the Kiama-Apply modules to provide interfaces
for our test harness. The code size increase for
Optimize is greater than for the other phases be-
cause this category aggregates anumber of smaller
optimization modules, each of which contributes
code size increases as described.
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Table 2. Non-blank, non-commented lines of code
(LOC) in the Apply compiler phases and support
categories

Stratego-Apply Kiama-Apply
(LOC) . (LOC) -

De-sugar 30 53

Do-Apply 54 119
Optimize 588 985
Environment 416 467
C language 539 503
Support 222 311

Signatures 126 1737

The Support category includes code for tasks
notdirectly related to rewriting, such as command-
line processing. The Signatures category includes
code that defines the term structures. Kiama-
Apply is much larger in this category since we
also include the code that translates ATerms into
Scala values and vice-versa. A normal use of
Kiama’s rewriting library would not use ATerms
at all, so this code would not be required.

A Typical Compilation

Asdiscussed in the section Apply and Its Compil-
ers, the Apply compilers are composed of a multi-
phase pipeline (Figure 2). To begin our analysis,
we present a scenario demonstrating how long a
typical compilation takes in both Stratego-Apply
and Kiama-Apply. In this example we consider
the Apply implementation of the example Sobel
edge detection algorithm.

Table 3 presents the timings for each trans-
formation phase during the compilation of the
Sobel module with both the Stratego-Apply and
Kiama-Apply implementations. Our timings do
not include measurements for parsing and the
pretty printing phases because these phases are
not primarily concerned with syntax tree rewrites.

Table 3. Compilation times and memory use when
processing the Sobel edge detection algorithm

Stratego-Apply Kiama-Apply

Time | Memory Time (ms) | Memory

(ms) (MB) é (MB)
De-sugar 33§ 1.88 499 2.74
(1" time)
Optimize 955 239 1175 2.96
(1** time)
Do-Apply 419 1.96 642 2.80
Environ- 491 2.07 1054 2.83
ment
De-sugar 380 1.93 572 2.77
(2™ time)
Optimize 1401 2.46 3162 3.05
(2™ time)
Total = =7 sec-

sec- onds

onds

Each transformation phase is an independent
module in Stratego-Apply and an independent
class in Kiama-Apply. A phase reads in an ATerm,
transforms it, and writes the transformed term out
to disk to be used as input for the next phase. (The
same ATerm library is used by the two implemen-
tations.) This approach is useful for compiler
development and debugging. However in a pro-
duction compiler, syntax trees would be passed
internally from one phase to the next, with the
input/output component only appearing at the
start and end of the pipeline. For this reason, our
measurements exclude the input and output com-
ponents of the processing.

From this data we see that an end-to-end
transformation in Stratego-Apply took approxi-
mately four seconds, whereas Kiama-Apply took
approximately seven seconds. Thus the Kiama-
Apply implementation is slower by a factor of
approximately 40%. In addition the Kiama-Apply
implementation consumes about 26% more mem-
ory. These performance measurements are typical
of what we observed in other similar experiments
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and show that Kiama-Apply, while slower than
Stratego-Apply, is still suitable for regular use.
In the rest of this section we investigate how the
performance scales as the input Apply program
size varies and how it compares when rewriting
is isolated from traversal.

Experimental Input

Due to a limited supply of large Apply programs,
for the set of experiments investigating perfor-
mance in more detail, we used a code generator
to produce the input text of programs. The gen-
erator produces programs that perform image
manipulations similar to the steps of the Sobel
example shown earlier. Command-line options
can be used to control the number of operations
and the processing window size. Increasing the
number of operations increases the width of the
syntax tree, while increasing the window size
increases the complexity of the processing state-
ments and hence the depth of the tree. Thus, we
can vary the input size to examine the effect of
scale on the performance of the two implemen-
tations. The remaining experiments use test data
generated by incrementing the window size in
steps of two and operations in steps of five. In
the experiments we report the syntax tree sizes
in terms of number of nodes, which explains the
non-obvious X-axis labels.

Experiment 1: Memory Use
as Tree Size Varies

Recall that the “C Language” phase of the Ap-
ply compilers is responsible for translating the
compiler’s intermediate representation into an
abstract syntax tree that represents the generated
C program. For our first experiment we ran the
C Language phases of the Stratego-Apply and
Kiama-Apply compilers on a variety of syntax
trees to measure their memory usage (Figure 4).
The C Language phase was chosen because it
exercises the rewriting machinery in a significant
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way, visiting all parts ofthe AST. The performance
reported for this phase is also typical of the other
phases. The syntax trees in this experiment are
of increasing width, achieved by increasing the
window size in the Apply code generator. As is
to be expected, we observed that both compilers’
memory consumption increased as the size of the
syntax tree increased. The rate of memory con-
sumption growth for Kiama-Apply was less than
for Stratego-Apply. In addition, Stratego-Apply
consumed less memory than Kiama-Apply for
small to medium sized trees but more for large
trees. The crossover point appears at around
50,000 tree nodes.

Our profiling results reveal that in the first
data set from Figure 4 the ATerms occupied 9%
of Stratego-Apply’s memory usage compared to
45% for Kiama-Apply. However, for the last data
set where the trees were at their largest the ATerms
occupied close to 60% of the heap memory for
both Stratego-Apply and Kiama-Apply. It is in-
teresting to note that before the ATerms were read,
the C Language phases in Stratego-Apply and
Kiama-Apply occupied around the same amount
of memory (approximately 1.7MB).

From this experiment we conclude that Kiama-
Apply uses a reasonable amount of memory,
particularly for large trees. We have not precisely
identified the reason for the increasing memory
overhead for Stratego-Apply. Preliminary analysis
indicates that it may be due to the caching approach
used by the ATerm library to avoid duplication.

Experiment 2: Execution Time when
Varying the Width of the Tree

This experiment compares the CPU processing
time for the C Language phase on syntax trees
with fixed depth and varying widths (Figure 5).
Increasing the number of operations for our code
generator varied the widths of the trees.

Figure 5 shows that, for a fixed tree depth, the
execution time is a linear function of the tree width
for both Stratego-Apply and Kiama-Apply. We
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Figure 4. C Language phase memory usage as tree size varies: X-axis: tree size in number of nodes;

Y-axis: memory retained size in bytes

Figure 5. C Language phase CPU time as tree width varies: X-axis: tree width in nodes; Y-axis: CPU

time in milliseconds
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also observe that for trees with relatively small
widths the performance of Stratego-Apply and
Kiama-Apply was similar. However, as the width
of the tree increased, Kiama-Apply’s execution
time increased more rapidly than Stratego-Ap-
ply’s. In ATerms, these wider trees are repre-
sented by longer arrays at each node of the tree.

A longer array represents more terms that un-
dergo pattern matching and possible rewriting.
From this we observe that pattern matching and
term rewriting takes longer in the internal lan-
guage. Overall, Kiama-apply is slower than
Stratego-apply but scales in the same way.
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Experiment 3: Execution Time when
Varying the Height of the Tree

This experiment compares the execution time of
the two Desugar phases on trees of varying height
and consistent widths. Desugar was chosen for
this experiment because it performs a significant
number of rewrites. Increasing the processing
window size for our code generator varied the
heights of the trees.

From Figure 6 we observe that the execution
time isan exponential function ofthe tree height for
both Stratego-Apply and Kiama-Apply. However,
the base of the exponential function is greater for
Kiama-Apply. The primary traversal strategy used
in this part of the experiment was the topdown
traversal strategy, which is expressed in Kiama as

s <* all(topdown(s))

The all strategy iterates each sub-term of a
subject term applying a strategy as it visits each
subject term. This strategy is recursive and so
navigates the multidimensional structures by re-
peating the a1l for each nested structure. This

implementation explains the exponential results
we see in Figure 6.

Kiama-Apply spends approximately 50% of
total CPU time in traversal when rewriting. In
contrast, Stratego-Apply spends much of its time
building its cache to produce the optimized con-
structnecessary for the tree rewrite. This highlights
a fundamental difference in architecture between
Kiama and Stratego in the way terms are stored
and accessed. Where Stratego spends more time
upfront to construct an internal term representa-
tion that then gives it a quick access mechanism
fortraversal, Kiama spends less time constructing
such structures at the cost of a slower traversal.

Experiment 4: Isolating
Rewrite Times

The previous experiment pointed to a difference
in rewriting times in the two implementations. To
get more insight into this difference,"kwe decom-
pose the total execution time of a transformation
into the time spent traversing the tree (f) and the
time spent rewriting parts of the tree (7). This de-
composition is only valid for one-pass traversals
but not fixed-point traversals (Visser, 2004). To

Figure 6. Desugar phase CPU time as tree height varies: X-axis: maximum tree depth in steps from root;

Y-axis: CPU time in milliseconds
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Figure 7. CPU time for rewrites as tree width
varies: X-axis: tree width in nodes, Y-axis: CPU
time in milliseconds

measure the transformation time (#) the rewrites
in Desugar were temporarily disabled during this
experiment. The results presented reveal that
rewrite times in Stratego-Apply are quicker than
that of Kiama-Apply by a factor of around five.

From Figure 7 we observe that as the width
of the tree increases the rewrite times in both
Stratego-Apply and Kiama-Apply increase lin-
early. We expected to see the implementation
specifically designed for rewriting to out-perform
one based on a general-purpose language without
any special support for rewriting. Figure 7 does
show this difference, since Kiama-Apply is quite
a bit slower than Stratego-Apply. However, the
Kiama-Apply performance is not unrealistic and
we see a similar linear scaling pattern, so Kiama
remains usable even at large tree sizes.

SUMMARY

As we expected, when a complete rewriting
phase is measured Kiama-Apply is slower than
Stratego-Apply and uses more memory. However,
the performance is sufficiently good for most
applications. Our more detailed experiments on
synthetic input showed that the scaling behavior
of the two implementations is similar. Therefore,
we have confidence that Kiama’s rewriting library
is feasible even for large inputs. Performance
of the library is likely to get better as the Scala

compiler performs more optimization and the
library is improved.

FUTURE RESEARCH DIRECTIONS

Future research directions flowing from the
work presented in this chapter can be divided
into two main topics: general research into DSL
implementation via case studies similar to the one
present here, and continued investigation of the
term rewriting domain.

We strongly encourage other researchers to
conduct side-by-side evaluations of the kind we
have presented here. These evaluations can be
time-consuming and may seem pointless to some
degree, since an existing DSL is being duplicated.
However, the true benefits and pitfalls ofan imple-
mentation approach cannot really be appreciated
until a proper evaluation is performed, so it is
importantthat language researchers conductthem.
Although we have focused on an embedding ap-
proach in this chapter, side-by-side comparison
can be of benefit for any implementation method.

This chapter has presented an analysis of the
two language implementations along various
dimensions that made sense for this domain and
implementation approach. It would be interest-
ing to generalize these dimensions to develop a
standard approach to language comparison that
will help researchers structure their experiments.
Further down the line, it is desirable to try to de-
velop general criteria for assessing the suitability
of different DSL implementation approaches,
for which a starting point is presented in Kosar
et al (2008). This task is non-trivial since the
characteristics of DSLs and implementation ap-
proaches differ greatly. For example, even within
the general embedding approach there are many
different ways to implement a DSL, ranging from
the pure approach used in this chapter to a more
translation-based approach where an intermedi-
ate form is created. Capturing the advantages
and disadvantages of all of these approaches in
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a succinct, comprehensible, general way is an
important topic for future research.

In the rest of this section we outline some
areas where the Kiama rewriting library could be
extended, in some cases to remedy deficiencies
compared to Stratego, and in others to go beyond.
Firstand most simply, researchers have developed
type systems for strategic rewriting (Limmel,
2003). We expect that those systems could be
instantiated in Scala’s type system to provide
more static assurances about the correctness of
Kiama rewriting programs.

Concrete Syntax

Stratego provides an extremely useful facility for
expressing patterns and term constructionusing the
concrete syntax of the language(s) that are being
processed (Bravenboer, 2008). Concrete syntax
support means that verbose prefix constructor
terms can be avoided, making the rules much
easier to write and understand. Concrete syntax
support is achieved in Stratego by a meta level
of processing that combines the Stratego gram-
mar with the grammar for the concrete syntax
fragments. The resulting parser is able to process
the input text to replace the concrete syntax with
equivalent prefix term syntax.

Kiama does not have any support for concrete
syntax at the moment. We plan to build a limited
form of it as a plug-in for the Scala build tool. We
will recognize concrete syntax fragments and pass
them to a user-specified processor for parsing and
pretty printing. The resulting code will be inserted
intothe Scala code for regular processing. Because
the plug-in will not understand Scala syntax, the
interaction between the code fragments and Scala
code will be limited. Nevertheless, it should be
sufficient for most purposes and keeping it sepa-
rate from the rewriting library will mean that this
facility can be used for other syntax tree matching
and manipulation such as within tree decoration
written using Kiama’s attribute grammar library
(Sloane, 2011).
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Dynamic Rules

Stratego has extensive support for dynamic rewrite
rules (Bravenboer, 2005). The basic idea is that
rules can be constructed, manipulated and removed
during rewriting. This facility is typically used
to record context-specific information that will
be used in some part of a term traversal and then
“forgotten” as the traversal proceeds.

We have developed custom support for dy-
namic rules for Kiama-Apply, since we aimed to
duplicate Stratego-Apply as closely as possible.
We plan to revisit this code to see whether it can
be usefully generalized and included in Kiama.
At that time we will carefully consider whether
applications of dynamic rules could more consis-
tently be achieved using other mechanisms, such
as by using Kiama’s attribute grammar library to
decorate terms with context-specific information.
Nevertheless, we expect that having some form
of dynamic rules will be useful.  *

Congruences

A Stratego congruence is a strategy that is named
afteraconstructor. It provides aconvenient syntac-
tic sugar for matching on the constructor to extract
the sub-terms, processing each sub-term with a
potentially different strategy, and assembling the
results. For example, if Add is a constructor with
two sub-terms, then the congruence Add (s,, s,)
first matches the subject term against the pattern
Add (¢, t,), then applies s, to ¢, and s, to 7, If
both applications succeed then the results are
combined as the sub-terms of a new Add term.
Kiama has some support for congruences but
can’t quite emulate the concise Stratego notation
without some boilerplate. Since we are using a
pure embedding, the patterns we need cannot
be synthesized from the constructor definitions.
Therefore we need boilerplate for each constructor
that matches the term and extracts the sub-terms.
The sub-terms are then passed to a generic Kiama
routine that applies the individual strategies and
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constructs the new term, if appropriate. We do not
currently use this congruence support in Kiama-
Apply. Some strategies would be simplified if we
did. We also don’t have congruence support for
data structures such as lists. It should be relatively
easy to add using the high-level interfaces provided
by Scala collections.

CONCLUSION

We have evaluated the effectiveness of an internal
implementation ofadomain-specific language by
comparing it to an existing external implementa-
tion that performs the same task. A non-trivial
compilation case study provided the context for
a realistic comparison. We saw that the two
languages were very similar, largely due to the
power of the Scala host language, particularly
its ability to define domain-specific operators.
Differences in name binding resulted from our
desire to reuse Scala’s powerful pattern matching
facilities. Scala’s stronger type system required
more discipline in the construction of terms.

A comparison of the two implementations of
the case study compiler showed that their sizes
were similar, but the internal version was slower
and used more memory. This difference is to be
expected, since the internal version is running on
a generic run-time whereas the external one uses a
run-time designed specifically for term rewriting.
Nevertheless, the internal language is still practi-
cally useful since its performance is close enough
to the external language and scales in the same
way on large inputs. The performance deficiency
is somewhat offset by a simpler implementation.

We hope that this study inspires other re-
searchers to conduct similar evaluations. The
methodology used here should translate into other
settings without too much trouble. Issues such as
expression syntax and binding constructs will be
common to other DSLs, but will induce different
solutions in different host languages. More case
studies will allow the relative advantages of dif-
ferent host languages to be compared.
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KEY TERMS AND DEFINITIONS

Apply: Animage processing domain-specific
language based on pixel-centered operations
that are applied consistently across an image,
automatically taking into account side conditions
such as image edges. Implemented in Stratego
as an optimizing compiler that produces C code.

Generic Traversal Strategy: A strategy that
describes how to traverse to sub-terms of the term
being rewritten, independently of the particular
structure being traversed.

Internal DSL: A domain-specific language
that is embedded as a library in a host general-
purpose programming language.

Kiama: A language-processing library built
by embedding various formalisms into the Scala
programming language. Includes a strategic term
rewriting component whose design is based on
the Stratego language.

Language Embedding: An approach to
language implementation where the syntax and
semantics of another host general-purpose lan-
guage are reused.
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Name Binding: The association of a name
with a program entity, such as in a definition of
a value or method, or as a result of a successful
pattern matching operation.

Pattern Matching: An operation that com-
pares a pattern against a piece of data. A match
either succeeds, possibly binding some names to
parts of the data, or fails.

Pure Internal DSL: An internal DSL where
the embedding is performed without any extra
translation step. In other words, DSL programs
are compiled and executed purely ashost language
programs.

Rewrite Rule: A rewriting specification that
matches a pattern against the term being rewrit-
ten and either succeeds, constructing a new term,
or fails.

Scala: A modern object-oriented and func-
tional programming language whose main imple-
mentation targets the Java Virtual Machine.

Strategic Term Rewriting: A style of term
rewriting where the application of rewrite rules
is controlled by high-level strategies rather than
by a fixed scheme.

Stratego/XT: A widely used strategic term
rewriting language and associated tools. Stratego
has both a compiler that produces native code via
C, and a compiler that produces Java code.

Strategy: Arewriting specification that gener-
alizes rewriting rules by allowing a combination
of pattern matching, term construction, rules and
choice. Rewriting is guided by the success or
failure of the component operations.

Term Rewriting: A transformation process
where tree-structured data (or terms) are rewrit-
ten by rules that pattern match on term structure.
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ABSTRACT

Domain Specific Languages (DSL) are becoming increasingly more important with the emergence of
Model-Driven paradigms. Most literature on DSLs is focused on describing particular languages, and
there is still a lack of works that compare different approaches or carry out empirical studies rega;ding
ljhe construction or usage of DSLs. Several design choices must be made when building a DSL, but one
important question is whether the DSL will be external or internal, since this affects the other aspects
of the language. This chapter aims to provide developers confronting the internal-external dichotomy
with guidance, through a comparison of the RubyTL and Gra2MoL model transformations languages

which have been built as an internal DSL and an external DSL, respectively. Both languages will ﬁrs’t
be introduced, and certain implementation issues will be discussed. The two languages will then be

compared, and the advantages and disadvantages of each approach will be shown. Finally, some of the

lessons learned will be presented.

INTRODUCTION

Software applications are normally written for a
particular activity area or problem domain. When
building software, developers have to confront
the semantic gap between the problem domain

DOI: 10.4018/978-1-4666-2092-6.ch0035

and the conceptual framework provided by the
software language used to implement the solution.
They must express a solution based on domain
concepts using the constructs of a general purpose
programming language (GPL), such as Java or
C#, which typically leads to repetitive and error
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