
Lightweight Language Processing in Kiama

Anthony M. Sloane

Department of Computing, Macquarie University, Sydney, Australia
Anthony.Sloane@mq.edu.au

Abstract. Kiama is a lightweight language processing library for the
Scala programming language. It provides Scala programmers with em-
bedded domain-specific languages for attribute grammars and strategy-
based term rewriting. This paper provides an introduction to the use
of Kiama to solve typical language processing problems by developing
analysers and evaluators for a simply-typed lambda calculus. The em-
beddings of the attribute grammar and rewriting processing paradigms
both rely on pattern matching from the base language and each add a
simple functional interface that hides details such as attribute caching,
circularity checking and strategy representation. The similarities between
embeddings for the two processing paradigms show that they have more
in common than is usually realised.

1 Introduction

Kiama is a language processing library for the Scala programming language [1, 2].
We are distilling the key ideas of successful processing paradigms from language
research and making them available in a lightweight library. In other words, we
are embedding the paradigms into a general purpose language. The result is a
flexible combination of general programming techniques and high-level abstrac-
tions suited to many forms of language processing. At present, we are focused
on building traditional language processing applications such as compilers, in-
terpreters, generators and static analysis tools, but in the longer term we believe
that these paradigms have much to offer in a more general software engineering
setting.

Some of the motivation for Kiama comes from experience building genera-
tors for the Eli system [3]. Eli translates high-level specifications of language
syntax, semantics and translation into C implementations. Eli successfully com-
bines many off-the-shelf tools and custom-built generators that use a variety of
specification languages. However, because of their varying origins, the Eli spec-
ification languages are often ad hoc, have arbitrary differences and lack features
that are commonplace in general purpose languages such as name space control,
modularity and parameterisation. In our view, as language processing systems
are used to tackle larger tasks and different techniques are combined, these issues
become particularly problematic.

The Kiama thesis is that in the language processing domain it is better to
start with a modern general purpose language that embodies prevailing wisdom



about how to structure, scale and extend applications, than to expect every gen-
erator builder to incorporate this wisdom into their own specification languages
and tools. The approach of Kiama is therefore to combine proven language pro-
cessing paradigms into a coherent whole, supported by general facilities from a
host language.

Kiama is hosted by the Scala programming language that provides both
object-oriented and functional features in a statically-typed combination run-
ning on the Java Virtual Machine [1, 2]. Thus, Scala constitutes a powerful base
on which to experiment with embedding. At present, Kiama supports two main
processing paradigms: attribute grammars and strategy-based term rewriting. At-
tribute grammars are particularly suited to expressing computations on fixed tree
or graph structures, which is needed for static analysis. Rewriting is ideal for
describing computations that transform trees for translation or optimisation.

A notable result from our experience embedding attribute grammars and
rewriting in Scala is the high degree to which the power of more complex
generator-based systems can be realised with a lightweight embedding. For this
domain at least, Scala provides just the right level of expressibility for the no-
tations and flexibility for their implementation. Moreover, the two paradigms
are embedded in a very similar way based on Scala’s pattern matching con-
structs. Thus, parallels between the paradigms that were not previously obvious
are revealed and the new concepts that must be learned by a programmer are
limited.

A full comparison of Kiama with related work is beyond the scope of this
paper. Nevertheless, it is important to note that the library has been heavily
influenced by existing notations and implementations of both attribute gram-
mars and rewriting. The attribute grammar facilities are modelled on those of
the JastAdd system [4]. Kiama’s term rewriting library is based on the Stratego
language and library [5]. Kiama also shares some characteristics with other em-
beddings of these paradigms, most notably strategic programming in functional
languages in the Strafunski [6] and Scrap Your Boilerplate projects [7].

Kiama is released under the GNU Lesser General Public License. Further
information including binary distributions, code, documentation, examples and
mailing lists can be found on the project site http://kiama.googlecode.com.

Outline

This paper presents an overview of Kiama’s current capabilities with a focus on
how the main features of the JastAdd and Stratego languages are supported via
a lightweight embedding. (More detailed discussion of Kiama’s relationship to
JastAdd can be found in Sloane et al. [8]).

We proceed by developing implementations of typical processing tasks for a
simply-typed version of the lambda calculus. This source language was chosen
to be familiar and relatively simple, yet to provide processing tasks that are also
relevant to other more complex languages.

Section 2 describes the version of lambda calculus used in the rest of the
paper and how programs are represented as Scala data structures. Section 3



shows how Kiama’s attribute grammar facilities can be used to define static
program analyses. Section 4 implements various forms of evaluation mechanism
as rewriting strategies. The paper concludes with a short discussion of Kiama’s
capabilities and future plans.

The paper presents the main code fragments necessary to achieve the desired
effects. No knowledge of Scala is assumed, but experience with object-oriented
programming and pattern-matching as in functional languages will be useful. We
omit uninteresting scaffolding code that is necessary to turn these fragments into
compilable Scala code. The complete source code can be found in the lambda2
example in the Kiama distribution.

2 A Typed Lambda Calculus

To keep things simple but realistic, we use a simply typed lambda calculus as the
source language for the processing described in this paper. Figure 1 summarises
the abstract syntax of the language.

The Scala version of the abstract syntax is a straight-forward encoding of
the abstract syntax using Scala case classes (Figure 2). For most purposes, case
classes operate as regular classes but also provide special construction syntax and
pattern matching support similar to that provided for algebraic data types in
functional languages. Case objects are the sole instances of anonymous singleton
case classes.

As an example of construction, a tree fragment representing the lambda
calculus expression

(λx : Int . (λy : Int . x + y − 2)) 3 4

can be constructed in Scala by the expression

App (App (Lam ("x", IntType ,
Lam ("y", IntType ,

Opn (SubOp ,
Opn (AddOp , Var ("x"),

Var ("y"))),
Num (2)))

Num (3)),
Num (4))

In later sections, we will pattern match against “constructors” such as Lam and
App to deconstruct such expressions.

3 Attribution

Attribute grammars have been widely studied as a specification technique for
describing computations on trees [9, 10]. In an attribute grammar, the context-
free grammar of a language is augmented with attribute equations which define
the values of attributes of tree nodes. In their purest form, attribute grammars



Expressions (e) n number
v variable
λv : t . e lambda abstraction
e1 e2 application
e1 o e2 primitive operation

Types (t) int primitive integer type
t1 → t2 function type

Operations (o) + addition
− subtraction

Fig. 1. Abstract syntax of typed lambda calculus.

abstract class Exp
case class Num (n : Int) extends Exp
case class Var (i : Idn) extends Exp
case class Lam (n : Idn , t : Type , e : Exp) extends Exp
case class App (e1 : Exp , e2 : Exp) extends Exp
case class Opn (o : Op , e1 : Exp , e2 : Exp) extends Exp

type Idn = String

abstract class Type
case object IntType extends Type
case class FunType (t1 : Type , t2 : Type) extends Type

abstract class Op
case object AddOp extends Op
case object SubOp extends Op

Fig. 2. Scala data type to represent the lambda calculus abstract syntax.



have no notion of tree updates, so they are best suited to analysis of fixed
structures and attributes can be understood as static properties.

Attribute grammar evaluation approaches can be divided into two broad cat-
egories: those that statically analyse attribute dependencies and those that wait
until run-time. Kiama’s approach is in the latter category [8]. It uses an evalua-
tion mechanism similar to that apparently first used by Jourdan [11], a variant
of which is also used in the JastAdd system [4]. Attributes are computed by
functions that dynamically demand the values of any other necessary attributes.
Attribute values are cached so that they do not needed to be re-evaluated if they
are demanded again.

3.1 Free variables

As a simple example of using attribution to compute a useful property of a
tree, consider free variable analysis of lambda calculus expressions. We want to
calculate a set of the variables that are not bound in a supplied expression. A
typical case-based definition of this analysis is as follows [12].

fv(n) = {}
fv(v) = {v}

fv(λv : t . e) = fv(e)− v

fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(e1 o e2) = fv(e1) ∪ fv(e2)

A Kiama version of this analysis uses standard Scala pattern matching to
specify the same cases and build a Scala Set value (Figure 3). In attribute
grammar terminology, fv is a synthesised attribute because it is defined in terms
of attributes of the expression and its children.

In Figure 3, ==> is a Kiama infix type constructor alias for Scala’s generic
partial function type. Thus, a function of type T ==> U transforms values of type
T into values of type U, but may not be defined at all values of type T.

val fv : Exp ==> Set[Idn] =
attr {

case Num (_) => Set ()
case Var (v) => Set (v)
case Lam (v, _, e) => fv (e) -- Set (v)
case App (e1 , e2) => fv (e1) ++ fv (e2)
case Opn (_, e1 , e2) => fv (e1) ++ fv (e2)

}

Fig. 3. Free variable attribute definition. Exp ==> Set[Idn] is the type of a partial
function from expressions to sets of variable identifiers. The operators -- and ++ are set
difference and union, respectively. An underscore is a wildcard pattern which matches
anything.



The code between braces in Figure 3 is standard Scala syntax for an anony-
mous pattern-matching partial function. Kiama’s attr function wraps the pat-
tern matching with the dynamic behaviour of non-circular attributes.

def attr[T,U] (f : T ==> U) : T ==> U

attr (f), where f is a partial function between some types T and U, behaves
just like f except that it caches its argument-result pairs and detects when a
cycle is entered (i.e., when f (t) is requested while evaluating f (t), for some
node t).

The free variables of an expression e can now be referenced via a normal
function application fv (e) or using Kiama’s attribute access operator -> as
e->fv. The latter is designed to mimic traditional attribute grammar notations.

3.2 Name and type analysis

Free variable analysis is a very simple computation defined by a bottom-up
traversal of the expression tree. Name and type analyses are examples of more
complex processing that must be performed by compilers and many other source
code analysis tools. An analysis of names is typically needed before type analysis
can be performed. Our aim in this section is to analyse expressions such as
λx : Int . (λy : Int → Int . y x) and determine that the application y x is legal
because y is a function from integer to integer and x is an integer.

It is not immediately obvious how to achieve the appropriate traversals of
an expression tree to perform name and type analysis. Do we first perform a
traversal for name analysis and then one for type analysis, or can we mix them
somehow? The attribute grammar paradigm helps considerably with avoiding
these questions because it enables us to concentrate on the dependencies be-
tween attributes. Dynamic scheduling of attribute computations will take care
of the traversal. Therefore, we do not need to explicitly separate name and type
analysis.

An environment-based analysis. First, we present a name and type analysis
that uses explicit environment structures to keep track of the bound names
and their types. An alternative where the tree itself holds this information is
presented in the next section.

The env attribute computes an environment for a given expression consisting
of all variables that are visible at that expression and their types. The environ-
ment is represented by a list, with the interpretation that earlier entries hide
later ones, thereby implementing variable shadowing.

In contrast to the fv attribute which was defined by matching on the node
itself, the env attribute is defined by cases on its parent. In other words, the
names that are visible at a node depend on the node’s context. We have three
cases: a) at the top of the tree (null parent) nothing is visible, b) inside a lambda
expression, the visible names are whatever is visible at the lambda node plus
the name bound at that node, and c) in all other cases, the names visible at a



node are just those that are visible at the node’s parent. These cases are easily
specified by pattern matching (Figure 4). In attribute grammar terms, env is an
inherited attribute.1

val env : Exp ==> List[(Idn ,Type)] =
attr {

case e =>
(e.parent) match {

case null => List ()
case p @ Lam (x, t, _) => (x,t) :: p- >env
case p : Exp => p- >env

}
}

Fig. 4. Definition of environment attribute as list of bound variables and their types.
Scala’s match construct performs pattern matching. A pattern p @ patt matches
against the pattern patt and, if successful, binds p to the matched value. A pattern
of the form p : T succeeds if the value being matched is of type T, in which case it
binds p to the value. An underscore is a pattern that matches anything. :: is the List
prepend operation.

Kiama provides fields called structural properties that give generic access
to the tree structure. For example, the parent field of e used in Figure 4 is a
structural property that provides access to the parent of any node, or null if
the node is the root. The other structural properties provided by Kiama are
isRoot for all nodes, and prev, next, isFirst and isLast for nodes occurring
in sequences. The structural properties are provided automatically to any class
that inherits Kiama’s Attributable trait, as in

abstract class Exp extends Attributable

With env in hand, we can define the tipe attribute2 that gives the type of
any expression (Figure 5). Unlike traditional typing rules, the environment is not
passed, because it can be accessed directly using the env attribute as needed.
There are five cases:

a) a number has integer type,
b) a lambda expression λx : t . e has type t → te where te is the type of e,
c) an application of a function of type t1 → t2 to an expression of type t1 is of

type t2,
d) the operands and result of an operation are integers, and
e) the type of a variable is the type associated with that variable name in the

environment.
1 In some cases, not shown in this overview, it is useful to match on both the node and

its parent. Therefore, the synthesised versus inherited distinction is not particularly
meaningful in Kiama, since each attribute definition is free to access any part of the
tree that it needs.

2 type cannot be used since it is a Scala keyword.



If none of these cases apply, a typing error is reported using Kiama’s message
facility and an error type of IntType is returned. (Of course, this approach
may lead to spurious errors. A more robust implementation would return a
dedicated error type and ensure that values of the error type were acceptable in
any context.)

val tipe : Exp ==> Type =
attr {

case Num (_) =>
IntType

case Lam (_, t, e) =>
FunType (t, e- >tipe)

case App (e1 , e2) =>
e1- >tipe match {

case FunType (t1 , t2) if t1 == e2- >tipe =>
t2

case FunType (t1 , t2) =>
message (e2 , "need " + t1 + ", got " +

(e2- >tipe))
IntType

case _ =>
message (e1 , "application of non-function")
IntType

}

case Opn (op , e1, e2) =>
if (e1- >tipe != IntType)

message (e1 , "need Int , got " + (e1- >tipe))
if (e2- >tipe != IntType)

message (e2 , "need Int , got " + (e2- >tipe))
IntType

case e @ Var (x) =>
(e->env).find { case (y,_) => x == y } match {

case Some ((_, t)) => t
case None =>

message (e, "’" + x + "’ unknown")
IntType

}
}

Fig. 5. Definition of the expression type attribute. Kiama’s message operation records
a message associated with a particular tree node. Scala’s find method searches a list
using the predicate provided as an argument and returns an Option[T] value, where T

is the list element type. A value of type Option[T] is either Some (t) for some value
t of type T, or it is None.

A reference-based analysis. In the environment-based analysis, we reuse the
type nodes of the tree when constructing the environment (in the Lam case).



We can go further and do away with the environment completely by observing
that each binding can be represented by the lambda expression in which it is
created. This kind of observation is at the heart of Hedin’s Reference Attribute
Grammars [13], which can be achieved in Kiama with the facilities we have seen
already.

All of the cases for the tipe attribute stay the same as in the environment
version, except for the variable case (Figure 6). Instead of looking up the name in
the environment, we define a lookup attribute that traverses the tree to find the
name if it can. There are three cases: a) we are examining a lambda expression
that defines the name we are looking for, so return that lambda expression, b)
we are at the root of the tree, so report that we didn’t find a binder for the name,
and c) ask the parent to lookup the name. lookup is therefore a parameterised,
reference attribute in attribute grammar terminology.3 In the variable case of
tipe we can now use lookup to find the binder of the name, if there is one.

In lookup, the parent reference e.parent[Exp] requires the type annotation
Exp because parent is generic and the compiler is not able to infer that expres-
sions only ever occur as children of expressions. The necessity for this annotation
reveals a limitation in the embedding approach due to full grammar knowledge
not being available when the abstract syntax is implemented as a class hierar-
chy. The type annotation results in a cast to the given type and it is up to the
developer to ensure that the cast cannot fail. More discussion of this issue can
be found in Sloane et al. [8].

4 Rewriting

Kiama’s rewriting library is closely modelled on the Stratego rewriting lan-
guage [5]. Stratego uses a general notion of a rewriting strategy that takes as
input a term representing a tree structure, and either succeeds, producing a
(possibly) rewritten term, or fails. Stratego has a rich language of strategy com-
binators and library strategies that achieve choice, iteration and other more
complex term traversal patterns.

The aim for this part of Kiama was to see how much of Stratego could be
realised using a pure embedding approach, in contrast to the standard imple-
mentation which compiles to C. As this section shows, most of Stratego can be
easily encoded. Our encoding is based around a functional abstraction similar
to that used for attribute equations in the previous section. Standard Scala pat-
tern matching can be used within rewrite rules. Implementations of the Stratego
combinators and library strategies enable most Stratego programs to be written
using almost the same syntax.

This section presents examples of using Kiama’s rewriting library to evaluate
lambda calculus expressions, based on Stratego versions of the same [14].
3 This use of a parameterised attribute defined by a Scala function is simple, but it

may not provide the desired caching behaviour, since the parameter value is not
included in the cache key. Kiama also provides a variant of attr that can be used if
more advanced caching is important.



def lookup (name : Idn) : Exp ==> Option[Lam] =
attr {

case e @ Lam (x, t, _) if x == name =>
Some (e)

case e if e.isRoot =>
None

case e =>
e.parent[Exp]->lookup (name)

}

val tipe : Exp ==> Type =
attr {

...

case e @ Var (x) =>
(e->lookup (x)) match {

case Some (Lam (_, t, _)) =>
t

case None =>
message (e, "’" + x + "’ unknown")
IntType

}

}

Fig. 6. Definition of the name lookup attribute and the new case for name and type
analysis of variables.

4.1 Evaluation

The evaluation strategies fit into a general framework. The interface to an evalu-
ator is a function eval that takes an expression and returns the expression that
is the result of evaluation.

def eval (exp : Exp) : Exp =
rewrite (s) (exp)

val s : Strategy

Evaluation is achieved by rewriting with the strategy s which is defined in
various ways in the following sections. rewrite applies its strategy argument to
its term argument. If the strategy succeeds, rewrite returns the resulting term,
otherwise, it returns the original argument.

4.2 Basic reduction

The basic evaluation rule for lambda calculus is beta reduction [12].

(λx : t . e1) e2 → [e2/x]e1

where [e2/x]e1 means capture-free substitution of e2 for occurrences of the vari-
able x in e1. Primitive operations can be evaluated by reduction rules that use
operations in the meta-language.



Figure 7 shows an encoding of these rules as strategies in Kiama. Each rule
is written as a pattern matching function on the relevant tree structure.4 The
pattern match is wrapped by a call to Kiama’s rule function that converts the
function into a strategy.

def rule (f : Term ==> Term) : Strategy

A Strategy is a function from Term to Option[Term]. The Option wrapper
is used to represent success and failure. rule lifts a partial function f to the
Strategy type, mapping undefinedness of f to None, representing failure of the
strategy. In other words, rule (f), for some partial function f, when applied
to a term t, succeeds with the result of f (t), if f is defined at t, otherwise it
fails.

val s =
reduce (beta + arithop)

val beta =
rule {

case App (Lam (x, _, e1), e2) =>
substitute (x, e2, e1)

}

val arithop =
rule {

case Opn (op , Num (l), Num (r)) =>
Num (op.eval (l, r))

}

Fig. 7. Definition of simple reduction strategies. The function substitute is assumed
to implement capture-free substitution. Each primitive operator is assumed to have a
method eval that evaluates that operator on two integers and returns the result.

The beta and arithop strategies are combined in Figure 7 to form s using
the non-deterministic choice operator +. Finally, the library strategy reduce is
used to repeatedly apply the basic strategies to the subject term until a fixed
point is reached.

4.3 The reduce strategy

The definition of reduce shows both the power of the Stratego language for
combining strategies, but also the relatively clean way that this language can
be embedded into Scala. In Stratego, reduce is defined in terms of other library
strategies and basic combinators as

try (s) = s <+ id

4 While the different rules could be combined into a single one, we prefer to keep them
separate to enable more flexible reuse.



repeat (s) = try (s; repeat (s))
reduce (s) = repeat (rec x (some (x) + s))

where the new Stratego constructs are

– the identity strategy (id) which always succeeds without changing the sub-
ject term,

– deterministic choice (<+) where the second strategy is only applied to the
subject term if the first strategy fails,

– sequential composition (;), where the second strategy is applied to the result
of a successful invocation of the first,

– definition of a locally recursive binding of x by rec x, and
– the primitive traversal combinator some whose result succeeds if the argu-

ment strategy succeeds on at least one child of the subject term.5

Thus, we can see that try attempts to apply its argument strategy but leaves
the term unchanged if that strategy fails. repeat applies a strategy repeatedly
until it fails. reduce repeatedly applies a strategy to sub-terms and the subject
term itself until all of those applications fail, upon which it succeeds with the
most recent result.

Stratego programs are built up in this way from a collection of primitives and
a large library. The result is an extremely expressive language of tree traversal
and transformation. Similar power can be achieved in Kiama using notations
that are very similar to those of Stratego, even though we rely entirely on Scala
syntax and concepts.

Figure 8 shows the Kiama version of the library strategies needed for the
basic reduction example. Scala’s ability to define methods with symbolic names
means that the primitive combinators <+ and + can be provided as Strategy
methods; we use <* for sequencing, since semicolon is already claimed for other
purposes by the Scala syntax. Similarly, try is renamed attempt since the former
is a Scala keyword. Other than these cosmetic changes, the main differences
between the two versions are the inclusion of the type information and a more
verbose definition for the recursive value x in reduce.

4.4 Explicit substitution

Instead of relying on a separate substitute function to implement the core of
the beta reduction rule, explicit substitutions can be used to bring the entire
evaluation process into the rewriting paradigm.

Figure 9 shows how an explicit substitution version can be written in Kiama.
First, a new Let tree construct is declared to represent substitutions. The sub-
stitution [e2/x]e1, where x has type t, will be represented by the expression
Let ("x", t, e2, e1)

5 Stratego and Kiama also have all and one that require success on all children or
one child, respectively.



def attempt (s : => Strategy) : Strategy =
s <+ id

def repeat (s : => Strategy) : Strategy =
attempt (s <* repeat (s))

def reduce (s : => Strategy) : Strategy = {
def x : Strategy = some (x) + s
repeat (x)

}

Fig. 8. Kiama version of Stratego library combinators. A parameter type preceded by
=> indicates a pass-by-name mode.

s is now defined in terms of a lambda strategy which in turn combines beta
reduction (modified to produce an explicit substitution), primitive evaluation
(unchanged) and a set of new strategies that implement substitution. subsVar
actually performs substitution on a variable reference, whereas the others prop-
agate substitutions inward. (As before, a single rule could be used instead of
these reusable pieces.)

4.5 Innermost evaluation

Using reduce has an efficiency penalty because it repeats its search for a re-
ducible expression starting from the top of the whole expression each time. An
innermost evaluation reduces sub-terms before trying to reduce the subject term.
Stratego’s innermost library strategy is defined as follows in terms of a more
general bottomup traversal strategy.

innermost (s) = bottomup (try (s; innermost (s)))
bottomup (s) = all (bottomup (s)); s

both of which are defined in an analogous way in the Kiama library.
innermost can be used with the lambda strategy defined in the previous

section to achieve a more efficient evaluation. In Kiama syntax, we have

val s = innermost (lambda)

4.6 Eager evaluation

An innermost evaluation is still not very realistic since in a programming lan-
guage implementation based on lambda calculus it is unlikely that reductions
will be performed inside the body of a lambda expression until that expression is
applied to an argument. Eager evaluation reduces the arguments of applications
before the reduction of applications.

An evaluation strategy to express this pattern of evaluation is as follows.

val s : Strategy =
attempt (traverse) <* attempt (lambda <* s)



case class Let (name : Idn , tipe : Type , exp : Exp ,
body : Exp) extends Exp

val s =
reduce (lambda)

val lambda =
beta + arithop + subsNum + subsVar + subsApp +
subsLam + subsOpn

val beta =
rule {

case App (Lam (x, t, e1), e2) =>
Let (x, t, e2, e1)

}

val subsNum =
rule {

case Let (_, _, _, e : Num) => e
}

val subsVar =
rule {

case Let (x, _, e, Var (y)) if x == y => e
case Let (_, _, _, v : Var) => v

}

val subsApp =
rule {

case Let (x, t, e, App (e1, e2)) =>
App (Let (x, t, e, e1), Let (x, t, e, e2))

}

val subsLam =
rule {

case Let (x, t1 , e1, Lam (y, t2, e2)) if x == y =>
Lam (y, t2 , e2)

case Let (x, t1 , e1, Lam (y, t2, e2)) =>
val z = freshvar ()
Lam (z, t2 , Let (x, t1, e1,

Let (y, t2, Var (z),
e2)))

}

val subsOpn =
rule {

case Let (x, t, e1, Opn (op, e2, e3)) =>
Opn (op , Let (x, t, e1, e2), Let (x, t, e1 , e3))

}

Fig. 9. Definition of reduction with explicit substitutions. In subsLam, freshvar is a
helper function that returns a unique variable name each time it is called.



First, we traverse the expression to evaluate any parts of it that should be evalu-
ated before reduction at the top-level of the expression is attempted. The lambda
strategy from earlier can be reused and augmented with a simple traversal strat-
egy that controls exactly which sub-terms are reduced first.

val traverse : Strategy =
rule {

case App (e1 , e2) =>
App (eval (e1), eval (e2))

case Let (x, t, e1 , e2) =>
Let (x, t, eval (e1), eval (e2))

case Opn (op , e1 , e2) =>
Opn (op , eval (e1), eval (e2))

}

In this version of traverse we evaluate eagerly, so that both sides of applications,
the bound expressions and bodies of substitutions and the operands of primitives
are evaluated. Forms that are not to be traversed do not need to be mentioned.

4.7 Congruences

Stratego provides a short-hand congruence notation for expressing traversal
strategies of this kind. For example, if C is a node constructor with two ar-
guments and s1 and s2 are strategies, then C(s1, s2) is a congruence for C. It
matches any C node, applies s1 to the first component of the node, applies s2

to the second component, and, if both s1 and s2 succeed, creates a new C node
containing their results in the first and second components, respectively. If either
s1 or s2 fail, then C(s1, s2) fails.

traverse from the previous section can be written using Stratego congru-
ences as follows.

App (s, s) + Let (id, id, s, s) + Opn (id , s, s)

The effect is to recursively evaluate those parts of the structure where s appears
and leave untouched those parts where id appears.

Automatic support for congruences appears to beyond a pure embedding ap-
proach, since it requires knowledge of the abstract syntax. As a partial measure,
Kiama helps developers of abstract syntaxes write their own congruences.6 For
example, a congruence for App can be written in Kiama as follows.

def App (s1 : => Strategy ,
s2 : => Strategy) : Strategy =

rulefs {
case _ : App => congruence (s1 , s2)

}

This definition overloads App to take strategy arguments. The pattern match re-
stricts attention to App nodes and a Kiama library function congruence returns
a strategy that implements the semantics of the congruence using s1 and s2.
rulefs is a variant of rule that takes a function returning a strategy instead of
6 We plan to generate congruences from a description of the abstract syntax in a future

version of Kiama.



the usual function that returns a term. With this congruence definition, eager
evaluation can be defined simply, without the supplementary traverse strategy.

val s : Strategy =
attempt (App (s, s) + Let (id, id, s, s) +

Opn (id , s, s)) <*
attempt (lambda <* s)

4.8 Lazy evaluation

Finally, we consider lazy evaluation where as much as possible is left un-reduced
until a beta reduction is performed. Only the traversal strategy needs to change;
the new traversal refrains from evaluating application arguments and let-bound
expressions too early. (A full lazy evaluation method would also include sharing
of computed values, which we omit here.) The change is restricted to the con-
gruences, where id now appears in the positions for arguments to applications
and bound expressions in Let constructs.

val s : Strategy =
attempt (App (s, id) + Let (id, id, id, s) +

Opn (id , s, s)) <*
attempt (lambda <* s)

5 Conclusion

The examples in this paper are typical language processing problems: static anal-
ysis and evaluation by transformation. We have seen that these problems can be
solved easily using embeddings of attribute grammars and strategic-based rewrit-
ing in a general purpose language. The attribute grammar embedding achieves
a substantial proportion of the functionality of JastAdd and the rewriting em-
bedding is very faithful to the Stratego language design. These embeddings can
also be employed to solve other language processing tasks such as desugaring,
interpretation, code generation, and optimisation.

The similarities between the embeddings of attribute grammars and rewriting
show that these two paradigms are alike in ways that have not been appreci-
ated to date. In each case, a simple functional interface, provided by attr and
rule, suffices to hide the complexities of the representation of attributes and
strategies. Apart from calling these functions, a Kiama programmer uses stan-
dard Scala constructs to define attribute equations and rewriting rules. Thus,
Kiama’s version of these paradigms is particularly lightweight compared to stan-
dalone generator-based systems such as JastAdd and Stratego. This lightweight
nature makes it more accessible to mainstream developers who would otherwise
not be exposed to these high-level processing paradigms. Moreover, since Kiama
is pure Scala, it automatically gains advantage from existing Scala tools such as
IDE support for editing and debugging, further simplifying the adoption process.

Kiama has some advanced capabilities that have not been presented here. The
attributes used in this paper cannot have cyclic dependencies (i.e., depend on



themselves). In some situations such cyclic dependencies are useful, particularly
in analysis problems where a solution is found by computing until a fixed point
is reached. See Sloane et al. [8] for an example that computes variable liveness
information using a variant of attr designed to handle cyclic dependencies.
Section 3.2 used a higher-order attribute which was a reference to an existing
tree node; Kiama also allows higher-order attributes that refer to new nodes
and supports forwarding [15] to redirect attribute evaluations automatically to
higher-order attributes. Finally, Kiama includes attribute decorators [16] that
can express patterns of attribute propagation.

Work on Kiama continues. Of particular interest is the interaction between
the two paradigms, such as using the free variables attribute during rewriting.
This kind of combination raises questions about the validity of attribute values
after a rewriting step. We are exploring methods for removing the necessity
for type casting of the generic structural properties such as parent due to a
lack of knowledge about the tree structure. We are also investigating features
such as collection attributes [17, 18] and better support for attribute modularity.
Following Stratego, Kiama’s strategies are currently largely untyped, except that
Scala’s type rules prevent ill-typed terms from being created. Typed strategies
will come to Kiama soon. It would also be useful to have some way of specifying
pattern matching on objects using concrete syntax [19, 20].

Acknowledgements

The author thanks the Software Engineering Research Group at the Technical
University of Delft for hosting the study leave during which the Kiama project
was initiated. That visit was supported by the Dutch NWO grant 040.11.001,
Combining Attribute Grammars and Term Rewriting for Programming Abstrac-
tions. Lennart Kats and Eelco Visser co-developed the attribute grammar fa-
cilities described here and provided the author with instruction in the arts of
Stratego. Charles Consel, Mark van den Brand, members of IFIP WG 2.11 and
anonymous reviewers have also provided useful feedback on the Kiama project.

References

[1] Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press (2008)
[2] Odersky, M.: Scala language specification, Version 2.7. Programming Methods

Laboratory, EPFL, Switzerland. (2009)
[3] Kastens, U., Sloane, A.M., Waite, W.M.: Generating Software from Specifications.

Jones and Bartlett, Sudbury, MA (2007)
[4] Hedin, G., Magnusson, E.: Jastadd: an aspect-oriented compiler construction

system. Sci. Comput. Program. 47 (2003) 37–58
[5] Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools,

and systems in StrategoXT-0.9. In Lengauer, C., et al., eds.: Domain-Specific Pro-
gram Generation. Volume 3016 of Lecture Notes in Computer Science. Springer-
Verlag (2004) 216–238

[6] Lammel, R., Visser, J.: A Strafunski Application Letter. Proc. of Practical Aspects
of Declarative Programming (PADL’03) 2562 (2003) 357–375



[7] Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices 38 (2003) 26–37 Proceedings of
the ACM SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI 2003).

[8] Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. In Vinju, J., Ekman, T., eds.: Proceedings of the 9th Workshop
on Language Descriptions, Tools and Applications (to appear in ENTCS). (2010)

[9] Deransart, P., Jourdan, M., Lorho, B.: Attribute Grammars: Definitions, Systems
and Bibliography. Volume 323 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany (1988)

[10] Paakki, J.: Attribute grammar paradigms—a high-level methodology in language
implementation. ACM Comput. Surv. 27 (1995) 196–255

[11] Jourdan, M.: An optimal-time recursive evaluator for attribute grammars. In:
Proceedings of the International Symposium on Programming, Springer (1984)
167–178

[12] Reynolds, J.C.: Theories of Programming Languages. Camridge University Press
(1998)

[13] Hedin, G.: Reference Attributed Grammars. Informatica (Slovenia) 24 (2000)
301–317

[14] Dolstra, E., Visser, E.: Building interpreters with rewriting strategies. In: Pro-
ceedings of the 2nd Workshop on Language Descriptions, Tools and Applications.
Volume 65 of Electronic Notes in Theoretical Computer Science. (2002) 57–76

[15] Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In Horspool, R.N., ed.: Proceed-
ings of the 11th International Conference on Compiler Construction. Volume 2304
of Lecture Notes in Computer Science., Springer-Verlag (2002) 128–142

[16] Kats, L., Sloane, A.M., Visser, E.: Decorated attribute grammars: Attribute eval-
uation meets strategic programming. In: Proceedings of the International Con-
ference on Compiler Construction. Number 5501 in Lecture Notes in Computer
Science, Springer-Verlag (2009) 142–157

[17] Boyland, J.T.: Descriptional Composition of Compiler Components. PhD
thesis, University of California, Berkeley (1996) Available as technical report
UCB//CSD-96-916.

[18] Magnusson, E., Ekman, T., Hedin, G.: Extending attribute grammars with col-
lection attributes - evaluation and applications. In: Proceedings of the Seventh
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, IEEE Press (2007)

[19] van den Brand, M.G.J., van Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers,
T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E.,
Visser, J.: The ASF+SDF Meta-Environment: a component-based language de-
velopment environment. In Wilhelm, R., ed.: Proceedings of International Con-
ference on Compiler Construction. Volume 2027 of Lecture Notes in Computer
Science., Springer-Verlag (2001) 365–370

[20] Bravenboer, M., Visser, E.: Concrete syntax for objects. In Schmidt, D.C.,
ed.: Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA’04), Vancouver,
Canada, ACM Press (2004) 365–383


