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Abstract

Experiences are presented from a new case study of em-
bedding domain-specific languages in the lazy functional
language Haskell. The domain languages come from the
Odin software build system. Thus, in contrast to most pre-
vious embedding projects, a design and implementation of
the domain languages existed when the project began. Con-
sequently, the design could not be varied to suit the target
language and it was possible to evaluate the success or oth-
erwise of the embedding process in more detail than if the
languages were designed from scratch. Experiences were
mostly positive. The embedded implementation is signifi-
cantly smaller than its Odin equivalent. Many benefits are
obtained from having the full power of an expressive pro-
gramming language available to the domain programmer.
The project also demonstrates in a practical software en-
gineering setting the utility of modern functional program-
ming techniques such as lazy evaluation and monads for
structuring programs. On the down side, the efficiency of
the embedded version compares unfavourably to the origi-
nal system.

1. Introduction

Embedding domain-specific languages in functional lan-
guages has received much recent attention [9, 10]. A num-
ber of successful domain-specific languages have been de-
veloped in this fashion, notably Fran for graphical anima-
tion [3, 5], Pan for image manipulation [4], Frob for robot
control [16, 17], and languages in the financial modelling
domain [18]. All of these projects have been based around
the Haskell lazy functional programming language [11].

Generally speaking, previous projects in this area have
had the freedom of designing the domain specific language
at the same time as implementing it via embedding. While
the projects have been successful, there is a sense in which
they don’t present the whole story about the suitability of

languages like Haskell for embedding. Because the lan-
guage design is being developed at the same time, alter-
ations can be made to fit it to the target language. There is
usually no existing implementation with which to compare
the embedded implementation. In contrast, if the domain-
specific language has already been designed before embed-
ding is attempted and was previously implemented via an
approach other than embedding, we can assume that the de-
sign reflects the designer’s view of the domain without in-
fluence from any particular target language.

One domain where embedding has been applied using
language designs that already exist is language processing.
Quite a bit of work has been done to express lexical analysis
and parsing problems as combinator programs in functional
languages [7, 12, 13]. The aim is to write expressions us-
ing a syntax based on the well-known regular expression
and context-free grammar notations for expressing lexical
and syntactic properties of languages. Generally speaking
this aim has been achieved fairly easily, but it has proven
more difficult to emulate the behaviour of language pro-
cessor generators. Recently, two projects have managed
to combine the combinator approach with methods used by
generators [1, 19].

This paper presents a case study from the software en-
gineering domain whose aim is similar to the aim of these
language processing projects. The idea is to take existing
domain specific languages and to realise them as embedded
languages in a functional language (in this case Haskell).
The languages are from theOdinsoftware build system [2].
One is used by Odin users to request the derivation of soft-
ware objects. The other language, which has some aspects
in common with the request language, is used to describe
the legal object types and the possible derivations between
object types.

We concentrate on the instantiation of Odin in theEli
language processing system [8]. The user supplies speci-
fications of language processing tasks to Eli and Eli uses
Odin to control the derivation of objects such as language
processor executables or generated source code. Eli and
Odin constitute a large complex system (over 13Mb in an



installed binary version) and hence reproducing their ca-
pabilities is a significant test of this approach to domain-
specific language implementation.

The system that resulted from the case study is called
Nowra. As a result of building Nowra we found that the
modelling capabilities of functional languages offer signifi-
cant benefits to the implementation of domain-specific lan-
guages even if the design was developed without this route
in mind. Nowra’s code is significantly smaller than Odin’s
because much of its functionality is performed by the under-
lying Haskell system. The remaining code is much easier to
understand because of the high-level nature of Haskell pro-
grams compared to C ones. The Nowra encoding of the Eli
system is somewhat bigger than the Odin version but the
differences are either relatively cosmetic or are avoidable
with non-functional changes to Eli itself. Unfortunately, but
not surprisingly, we found that the run-time performance of
Nowra compares badly to that of Odin, particularly with re-
spect to memory consumption.

The structure of the rest of the paper is as follows. Sec-
tion 2 describes Odin, the concepts of objects and object
types and the language an Odin user uses to request the
derivation of an object. Realisation of these concepts in
Nowra is discussed in Section 3. Sections 4 and 5 consider
Odin’s derivation graph language and Nowra’s version. Fi-
nally, Section 6 discusses the Nowra design with respect to
the advantages and disadvantages of using an embedding
approach in general, and embedding in Haskell in particu-
lar.

2. Odin objects and the request language

The names of objects are the heart of Odin’s request lan-
guage. Supplying the name of an object to Odin causes it to
try to bring that object “up to date”. Odin will run any tools
necessary to obtain a current value for the object. It caches
objects so it can avoid executing tools if their inputs have
not changed since the last time the object was produced.
It compares object values to further optimise the derivation
process, rather than just relying on timestamps. Inclusion
of parameters and their values in object names means that
Odin can deal with many different build variants at once.

The examples in Figure 1 give a flavour of Odin’s request
language. Each request is based on asource objectthat is a
user file, in this casetest.c . A derived objectis named by
appending its type to the name of the object from which it
is derived. Parameters are specified using the plus operator.
The greater-than operator is used to display the contents of
an object or to extract it into a file. As well as simple files,
objects can be directories or lists of objects.

3. Nowra’s request language

Odin’s request language can be syntactically embedded
in Haskell in a straight-forward fashion. Objects are rep-
resented by values of typeObject , object types are con-
structors ofObjectType , and parameters are constructors
of Parameter (Figure 2).

File is used to represent source file objects. Derived
objects are specified by applying the infix:< constructor
to an object and an object type. Parameterised objects are
specified by:+ and:+= applied to an object and a param-
eter;:+= also takes an object which is the value of the pa-
rameter. Lit is used to specify literal strings; it is most
useful for specifying parameter values. With these defini-
tions the Odin objects from Figure 1 are easy to represent
as Nowra objects (Figure 3).

Our design is constrained somewhat by Haskell. For ex-
ample, infix constructors must begin with a colon. We use
:< for derived objects because the more appropriate: is
the standard Haskell list constructor. Similarly, constructor
names must begin with an uppercase letter and we can’t use
embedded periods.

Odin’s output operator> is accommodated using the
function>: .

(>:) :: Object -> FilePath -> IO ()

>: takes the object to output and the filename of the des-
tination file, and returns a Haskell input/output action (IO )
that outputs the value of the object and returns no result
(indicated by the unit type() ). The action can be per-
formed by evaluating it at the top-level of the Haskell inter-
preter. Again we are constrained by Haskell in our choice
of names for this function; non-constructors cannot begin
with a colon, hence we cannot use the more consistent:>
(although, admittedly, there is a nice symmetry between:<
and>: ). Haskell does not allow us to declare postfix func-
tions so we can’t define a version of>: that is equivalent
to Odin’s> with no output filename. Instead, we adopt the
convention that if the file path is empty it means standard
output, so>:"" has the desired effect.

4. Odin’s derivation graph

An Odin derivation graphis essentially a description of
the object types and parameters that an instance of Odin
understands, and how the object types relate to each other.
Derivation graphs are divided intopackageswhich contain
related object types and relationships. Many users can get
by with the default Odin derivation graph packages which
cover tasks including compilation of C programs, creation
of libraries, and formatting of documentation. However,
power users (such as the Eli developers) need to write
new packages to define object types and specify process-
ing steps. In fact, Eli is just an instantiation of Odin with



test.c :exe # Compiled executable
test.c :exe :symbols # Symbols defined in executable
test.c :exe >test # Executable to file "test"
test.c :exe :symbols> # Display symbols
test.c +debug :exe # Executable for debugging
test.c +opt=2 :exe # Optimized executable
test.c :output # Directory containing output from run
test.c :output / results # Output file "results"
test.c :incl.all # List of files included by "test.c"
test.c :incl.all :names> # Display names of include files
test.c :output :list # List of output files

Figure 1. Odin request language examples.

data Object = File FilePath -- source file
| Object :< ObjectType -- x:ot
| Object :+ Parameter -- x +foo
| Object :+= (Parameter,Object) -- x +foo=val
| Lit String -- literal string
| Object :/ String -- selection from a directory
| ... -- see Figure 5

data ObjectType = Exe | InclAll | List | Names | Symbols | ...
data Parameter = Debug | Opt | ...

Figure 2. Haskell data types representing user-level Nowra objects, object types and parameters.

a collection of 43 packages dealing with object types and
tools peculiar to the language processor generation domain.
Examples in this section are taken from Eli’s command-line
processing (CLP) package. An excerpt from the CLP pack-
age derivation graph is shown in Figure 4.

The first line of the excerpt declares that files whose
names match the pattern “*.clp” are to be regarded as source
objects of typeclp .

An object type is declared by specifying its name, a
documentation string and its direct supertypes. The types
FILE , LIST , andDERIVED-DIRECTORYare predefined
Odin types. Hence,clp objects are files,clp.cmpd ob-
jects are lists, andclp_gen objects are directories. Both
one.clp.cmpd andext.clp.cmpd are declared to be
subtypes ofclp.cmpd , so objects of those types are lists
too.

The derivation graph describes how objects can be pro-
duced from other objects bytools. There areinternal tools
(ones that are predefined by Odin) andexternal tools(pro-
grams or scripts that exist outside Odin). The most com-
monly used internal tool isCOLLECTthat can be applied
to any number of input objects and produces a list of those
objects. For example, an object of typeone.clp.cmpd
can be made from an object of typeclp by collect-
ing the input object into a (singleton) list. Similarly, an
ext.clp.cmpd can be made from a list by extracting

the list elements that are subtypes ofclp . The derivation
:extract=:clp applies thesecond-order object type
extract to the input list with the typeclp as an argu-
ment. Among Odin’s other second order object types are
ones for deleting elements from a list (delete ), applying
an object type to each element of a list(map) , and recur-
sively applying an object type to a list (recurse ).

External tools are specified using the internalEXECtool.
The name of the external tool to invoke is given, along with
any command-line arguments. Odin arranges for the tool to
be invoked in an empty working directory where the outputs
can be created. For example, aclp_gen object can be de-
rived by running the scriptclp_gen.sh with command-
line arguments “.” (the package directory) and the result
of derivingclp.cmpd :cpp from the input object of the
clp_gen derivation. (cpp applies the C pre-processor to
each file in its input list and concatenates the result.) The
script is expected to produce a directory calledclp_gen
in the working directory becauseclp_gen is a subtype of
DERIVED-DIRECTORY.

The derivation graph also contains declarations of pa-
rameters. For example, a packagecc for C program com-
pilation might include parameters for specifying a debug-
ging compilation and for listing pre-processor symbols that
should be defined.

+debug ’Debugging flag’ => :first;



File "test.c" :<Exe File "test.c" :<Output
File "test.c" :<Exe :<Symbols File "test.c" :<Output :/ "results"
File "test.c" :<Exe >:"test" File "test.c" :<InclAll
File "test.c" :<Exe :<Symbols >:"" File "test.c" :<InclAll <:Names >:""
File "test.c" :+Debug :<Exe File "test.c" :<Output <:List
File "test.c" :+=(Opt,Lit "2") :<Exe

Figure 3. Examples from Figure 1 in Nowra syntax.
*.clp => :clp;

:clp ’CLP specification’ => :FILE;
:clp.cmpd ’Set of CLPs’ => :LIST;
:one.clp.cmpd ’Singleton CLP’ => :clp.cmpd;
:ext.clp.cmpd ’Extracted CLPs’ => :clp.cmpd;
:clp_gen ’Objects generated from CLPs’ => :DERIVED-DIRECTORY;

COLLECT (:clp) => (:one.clp.cmpd);
COLLECT (:LIST :extract=:clp) => (:ext.clp.cmpd);
EXEC (clp_gen.sh) (.) (:clp.cmpd :cpp) => (:clp_gen);

Figure 4. Part of the CLP package derivation graph from Eli.

+define ’Defined symbol’ => :cat;

When processing a derivation involving parameters, Odin
collects the parameter values as specified by the user into a
list, applies the object type from the parameter declaration,
and passes the resulting object to the parameterised deriva-
tion. The predefined typesfirst andcat return the first
element of a list and concatenate a list, respectively.

The declaration of an external tool can specify param-
eter values to be inputs. For example, we might use the
following declaration to specify how to produce an object
file (typec.o ) from a C file.

EXEC (c.o.sh) (:c) (+debug) (+define)
=> (:c.o);

Three arguments will be passed to the scriptc.o.sh : the
name of the C file, the value of thedebug parameter, and
the value of thedefine parameter.

5. Nowra’s derivation graph

In Nowra the main part of the derivation graph is en-
coded in an evaluation functioneval .

eval :: Object -> Eval Object

A value of typeEval Object is a computation that eval-
uates an object given the current state of the system and re-
turns the result of the evaluation (either an evaluated object
or a failure message) with the new state of the system.

eval performs evaluation of atomic objects such as
files, lists and strings. TheObject type is extended with
constructors for evaluated objects as shown in Figure 5.

Evaluated file, directory, and list objects are represented by
CachedFile , CachedDir , andObjs objects, respec-
tively. They also carry their parameter values.

eval also handles selection of files from directories,
second-order derivations (expressed with the:= construc-
tor) and derivations based on the sub-typing relation defined
by the derivation graph. For the latter it uses a function
subtypes that encodes the relation. For example,

subtypes ClpCmpd => [OneClpCmpd,
ExtClpCmpd]

5.1. Evaluating derived objects

Derived objects are evaluated by dispatching to an eval-
uation function defined by the appropriate derivation graph
package. For example, the CLP package defines the func-
tion clp to handle derivations to the CLP object types.

clp :: Object -> ObjectType ->
Eval Object

clp has one clause per object type that it can handle. For
example, the clause forOneClpCmpd is

clp x OneClpCmpd = collect [x :<Clp]

wherecollect is a function that implements the func-
tionality of Odin’sCOLLECTinternal tool. This definition
closely matches the corresponding Odin derivation graph
declaration from Figure 4; the main difference is the inclu-
sion of the objectx which is implicit in the Odin version.
Evaluation ofExtClpCmpd can be defined similarly.



data Object = ... -- see Figure 2
| CachedFile FilePath Parameters -- a file in the cache
| CachedDir FilePath Parameters -- a directory in the cache
| Objs [Object] Parameters -- a list of objects
| Object := (ObjectType2,ObjectType) -- second order x ot2=ot
| Object :? Parameter -- a parameter value

data ObjectType2 = Delete | Extract | Map | Recurse | ...

Figure 5. Nowra objects representing values, parameter access and second-order derivations.

clp x ExtClpCmpd =
collect [x :<LIST :=(Extract,Clp)]

ClpCmpd is harder because we must take into account
the subtyping relationships. We must evaluate the in-
put object and see whether it’s a file or a list. If it’s a
file then OneClpCmpd is applicable; if it’s a list then
ExtClpCmpd is used. (Readers unfamiliar with Haskell’s
do syntax should just interpret this code in an imperative
fashion.)dfail is a Nowra utility function that returns an
evaluation failure indicating that the requested object can-
not be derived.

clp x ClpCmpd =
do sx <- eval x

case sx of
x’@(CachedFile _ _) ->

clp x’ OneClpCmpd
x’@(Objs _ _) ->

clp x’ ExtClpCmpd
otherwise ->

dfail x ClpCmpd
Many Eli packages define a set of “compound” object types
analogous to those in the CLP package. Instead of speci-
fying similar subtyping rules in each package, we can take
advantage of this similarity of structure by abstracting the
previous three definitions into Haskell functionsonecmpd ,
extcmpd , andcompound . For example,

extcmpd x ot =
collect [x :<LIST :=(Extract,ot)]

We can now rewrite our definitions in a more abstract way
using these functions.

clp x OneClpCmpd = onecmpd x Clp
clp x ExtClpCmpd = extcmpd x Clp
clp x ClpCmpd =

compound x ClpCmpd OneClpCmpd
ExtClpCmpd

Finally, we must define how to evaluate theClp_Gen ob-
ject type. We use a functionexec which abstracts the func-
tionality of Odin’sEXECinternal tool.

clp x Clp_Gen =
exec "clp/clp_gen.sh"

[pkg "clp", x :<ClpCmpd :<Cpp]
"clp_gen" Clp_Gen

The arguments toexec correspond fairly closely to those
in the correspondingEXECdeclaration in Figure 4. There is
the external tool to run and a list of arguments. The Nowra
utility function pkg is used to produce a directory object
for the location of the CLP package. The last two parame-
ters are the name of the output file created by the external
tool and the Nowra object type. The latter is used with the
subtyping relationships to determine whether the output of
the tool is a file or a directory so that the appropriate object
can be returned.

5.2. Parameter access

Parameter access is specified using the:? constructor.
Hence Odin’s(+debug) is expressed as:?Debug . Note
that Odin overloads the+debug notation to mean both pa-
rameter specification and parameter access since the former
is only used in user requests and the latter is only used in
the derivation graph. We prefer to distinguish between the
different operations so we can use them together. Thec.o
derivation step from the last section is defined as follows.

cc x C_O =
exec "cc/c.o.sh"

[x :<C, x :?Debug, x :?Define]
"c.o" C_O

eval uses the functionparamtype to determine how to
obtain parameter values. It returns the object type to which
the list of parameter values should be derived. For example,

paramtype Debug = First
paramtype Define = Cat

5.3. Multiple tool outputs

Odin’s EXEC tool can produce more than one output
from a single external tool evaluation. For example, the
step that runs the frontend of Eli’s lexical analyser generator
GLA is defined by the following derivation graph fragment.

EXEC (gla_fe.sh) (.)
(:scan_spec :list :cpp)

=> (:flex_spec) (:back_data);



Two outputs are produced:flex_spec andback_data .
Nowra’s evaluation model assumes that an eval-

uation yields a single object. We accommodate
multiple object outputs by introducing a new built-
in type called COLLECTION, that is a subtype of
DERIVED-DIRECTORY. If a tool returns an object that is
a subtype ofCOLLECTION, Nowra returns the working di-
rectory in which the tool was executed. The outputs of the
tool can then be selected from that directory. In Nowra the
relevant GLA derivation graph definitions are

gla x Gla_FeDir =
exec "gla/gla_fe.sh"

[pkg "gla",
x :<Scan_Spec :<List :<Cpp]

"gla_fe" Gla_FeDir
gla x Flex_Spec =

eval (x :<Gla_FeDir :/ "flex_spec")
gla x Back_Data =

eval (x :<Gla_FeDir :/ "back_data")

whereGla_FeDir is a subtype ofCOLLECTION.

6. Discussion

The Nowra prototype as it currently stands does not im-
plement all of the functionality of Odin. In particular, Odin
is able to run multiple derivation steps at once and distribute
derivations to remote machines. Nowra can only run a sin-
gle derivation at a time on a single machine. Nowra also
does not implement value-based caching, features for con-
trolling which objects are brought up to date before tool exe-
cutions, or the ability to ignore error status on input objects.

Nevertheless, Nowra is functional enough to specify the
Eli derivation graph packages and can execute normal Eli
requests. In this mode Nowra just replaces Odin and uses
the external tools, scripts and files of Eli almost unchanged.
The only changes were to Odin derivation expressions that
occur in Eli files; these were changed to use Nowra’s syn-
tax. We have used the system to successfully derive ex-
ecutables and generate source code for the specifications
normally used to test an Eli installation. In each case the
Nowra-based Eli produces the same code as the Odin-based
Eli.

The rest of this section discusses Nowra with a view to
the pros and cons of using Haskell as an embedding target
for this project.

6.1. Syntax and specification

We were able to get pretty close to Odin’s request lan-
guage and derivation graph syntax in Nowra. Haskell’s
ability to define infix data constructors was important. Re-
strictions on the form of constructor and function names bit

somewhat, but not greatly enough to obscure the similari-
ties. (Actually, it was somewhat fortunate that colons fea-
ture prominently in Odin syntax and are required to begin
Haskell constructor names.)

It’s important to remember that Odin has a fixed syntax
whereas Nowra’s is easily extensible at the Haskell level.
This difference impacts in a number of specific ways. For
example, Odin tools likeCOLLECTand EXECare built
into the system, whereas their Nowra equivalents are just
Haskell functions. Hence they can be used at the interactive
prompt, instead of just in derivation graph fragments. Hav-
ing the whole language available interactively makes testing
easier. In Odin, uses ofCOLLECT, EXEC, and so on must be
compiled by the derivation graph compiler and Odin must
be restarted before they can be tested. Similarly, in Nowra
we can write requests that access parameter values or per-
form second-order derivations; in Odin these features can
only be used in the derivation graph.

A Nowra user can write their own functions to imple-
ment new tools if they have the need. All they have to do
is fit in with the interface assumed byeval . Extension via
this method is much easier than understanding and mod-
ifying the Odin implementation to add new functionality.
Similarly, while Odin allows user-defined first-order object
types, it does not allow definition of second-order object
types; we are stuck with the ones provided. In Nowra it is
easy to add new second-order types and write an evaluation
clause to handle them. We also have more flexibility when
it comes to defining first-order object types, because Nowra
makes the representation of objects available. For example,
Odin suppliesFirst to return the first object in a list, but
no way to return a list of all but the first object. It is easy
to define such operations in Nowra by lifting Haskell list
operations to Nowra lists.

We can also use functions to define shorthands for com-
monly occurring situations in a specific use of Nowra. For
example, in Section 4 we saw how the Eli CLP package
usesClp , OneClpCmpd, ExtClpCmpd and ClpCmpd
to assemble “compound” CLP specifications from either a
single file or from a list of files. This is one instance of
an idiom that is repeated more than a dozen times in other
Eli packages. We showed how using user-defined func-
tions can simplify these declarations, but we can go one
step further. Observe that the object typesOneClpCmpd
andExtClpCmpd really only exist because of the partic-
ular design of Odin’s derivation graph language. Specifi-
cally, there is no simple way to say that we wantClpCmpd
to form a singleton list if the input is a singleClp ob-
ject, or to extract theClp objects from an input list. We
are forced to invent the somewhat artificialOneClpCmpd
andExtClpCmpd types and to use subtyping to express
this processing. Because Nowra makes the subtyping re-
lation available programmatically we could define a single



primitive for handling compound objects and do away with
OneClpCmpd andExtClpCmpd . Similar savings can be
achieved with other idioms in the Eli derivation graph. A
more abstract derivation graph description results.

Having a full language available also means that we can
easily implement features in Odin’s equivalent of Make-
files [6]. For example, Odin allows definitions like

test == test.c +debug :exe

to be placed in an Odinfile. The requesttest is then equiv-
alent to test.c +debug :exe >test . In Nowra
since requests are just values we can use Haskell’s normal
binding mechanisms to create shorthands of this kind.

In summary, because we have the full definitional power
of a programming languageandwe can use the domain no-
tations to express programs in that language, we have a fun-
damental advantage over an alternative where we can only
extend the system by pushing down to a lower-level imple-
mentation language.

6.2. Implementation issues

The most obvious effect of using Haskell for the Nowra
implementation is that we can use the Haskell interpreter in-
stead of having to develop a language implementation from
scratch. Less obviously, another advantage of embedding
is that the domain-specific language can be used in the im-
plementation of the system. For example, in the evalua-
tion of parameter accesses we need to apply the parameter
type to the list of parameter values to obtain a single ob-
ject. We can express this in the evaluation function using
the :< constructor. Thus the implementation is much more
abstract than one where operations must be expressed in a
lower-level implementation language.

Some specific features of Haskell play an important role
in Nowra. For example, the module system gives us proper
control over information hiding compared to Odin’s pack-
age mechanism where derivation graph fragments are physi-
cally separated but logically declare object types in a global
name space. On the downside, our approach to modular-
ising the evaluation function by dispatching to individual
package functions is not ideal since we are required to dis-
patch from a central location. Similarly, we must declare all
of the object types and parameters in one place. The system
would be more modular if there was a way to extend the
definitions of functions and data types in different modules.

Lazy evaluation also plays a useful role in the Nowra im-
plementation. In Haskell we automatically get the benefit of
only having things evaluated when they are needed. For a
build system that is trying to minimise work, this is a signif-
icant advantage. We can generally code the implementation
in the most convenient way and leave the minimisation up
to the language implementation.

Apart from the input/output involved with tool invoca-
tion, Nowra’s other major input/output requirement is to
be able to read and write the cache, and to read and write
objects by name. Because all of the data types involved
in the definition of the cache are instances of the Haskell
classShow, the Haskell implementation is able to automat-
ically produce input and output functions for theCache
data type. Thus reading and writing the cache is coded in
a few lines. Derived input and output is also very useful
for processing object names. Odin is able to display the
name of any object and itslist object type reads names
from files to create the objects in a list. In Nowra we can
display the name of an object using the derived output func-
tion for the Object type so no coding is required. The
hitch is that we cannot use the derived input function for
theObject type because some of the constructors are left
recursive which makes the derived input function go into an
infinite loop. To get around this problem we wrote a simple
reader for objects, effectively making the same transforma-
tion that is performed on left recursive productions when
defining top-down parsers [22].

The requirement that we be able to read and write ob-
jects by name rules out some alternative implementation
approaches. For example, it is tempting to consider us-
ing functions to represent object types and implementing
derivation by function application. A significant problem
with this approach is that Haskell is not able to treat pro-
grams as data in the way that languages like Lisp can.
Hence we can’t read or write an expression involving a
function. An exception in Haskell is applications of con-
structor functions which can be read and written and leads
to the approach we have adopted.

We use monads to structure Nowra’s implementation.
Monads are a structuring mechanism for functional pro-
grams based on concepts from category theory [20, 21].
They have been shown to be useful for expressing side-
effecting computations in a functional setting and struc-
turing programming language implementations [14, 15].
Nowra’s Eval type uses a combination of state and error
monad techniques to thread the cache state and error mes-
sages through evaluations without having to pass explicit
arguments. We also use the standard HaskellIO monad
to encapsulate computations that have side-effects such as
reading files or running external tools. The resulting imple-
mentation is significantly less complex than it would have
been without monads. We were able to use a highly expres-
sive functional style in much of Nowra but precisely con-
trol evaluation in an imperative style in core areas. Given
that we had very little experience with monads before this
project began, we were pleased with how easy they were to
apply in quite a practical setting.



6.3. Empirical comparison

Even though the Nowra version of Eli is not functionally
equivalent to the Odin version, it implements a large frac-
tion of the latter’s capabilities. Hence an empirical compar-
ison of their implementations, while not completely valid,
has some legitimate basis.

The Odin implementation contains much more code than
the Nowra implementation. The Odin interpreter that eval-
uates requests, manages the cache and so on, contains more
than 20,000 lines of C code and there is a derivation graph
compiler that is another 6,000 lines. This code is the portion
of the system that is fixed for all domains to which Odin is
applied. The equivalent code in Nowra is just under 1,000
lines of Haskell. We haven’t conducted a detailed compari-
son, but the most significant savings appear to be due to the
lack of an interpreter, and in the code for reading and writ-
ing expressions and the cache. Other savings are due to hav-
ing lists as a basic data type, not representing the derivation
graph as a data structure, and the generally more abstract
nature of Haskell programs compared to C programs.

The derivation graph constitutes the portion of the sys-
tem that changes from domain to domain. For the language
processor generation domain targetted by Eli the derivation
graph in Odin notation totals around 1,000 lines. The same
derivation graph in Nowra’s notations is about 1,700 lines of
Haskell code. While it would seem that the Nowra version
is significantly more verbose, the two versions are actually
very similar. Most of the differences are due to minor for-
matting issues and the fact that the Nowra derivation graph
is structured as modules so import declarations are required
to make cross-package dependences explicit. Other differ-
ences include the introduction of extra clauses to specify
multiple outputs from a tool (as described in Section 5.3),
explicit object references in the Nowra derivation graph as
opposed to Odin’s implicit objects, and Nowra’sEXECtool
that has more arguments than it strictly needs because we
didn’t want to alter the Eli tools to accommodate the differ-
ences between Odin and Haskell naming conventions.

Runtime measurements were conducted with a version
of Nowra compiled by the Glasgow Haskell Compiler (ver-
sion 5.00.1) using the-O option. The machine is a IBM
compatible PC with 128Mb of memory running Linux Red-
hat 7.0 and kernel version 2.2.19. The compiled Nowra
modules were loaded into the interactive version of the
Glasgow compiler. We used Nowra and Odin to drive the
Eli packages working on an Eli compiler specification con-
taining lexical analysis, parsing and attribute grammar com-
ponents. The specification is written in a literate program-
ming style and makes moderate use of Eli library modules.
Hence the specification exercises most of the packages in
the Eli system.

Odin takes about two minutes to generate an executable

for the compiler on a lightly loaded machine. In contrast,
Nowra takes more than five minutes. An even bigger differ-
ence is apparent when memory consumption is examined.
Odin starts out with a process size of less than a megabyte
and rises to around three megabytes. The Haskell inter-
preter process with the Nowra modules loaded is around
70Mb in size. During derivation of the compiler its size
rises to over 110Mb. The Odin cache consumes about 3Mb
after the compiler has been generated and Nowra’s ends up
at a similar size.

The cache size performance of Nowra is good, partic-
ularly considering that the cache is output in a text form
rather than in binary. Nowra doesn’t currently implement
value-based caching, however; we can expect the cache size
to increase when it does.

Nowra’s overall runtime performance leaves something
to be desired, particularly as far as memory consumption
goes. The measurements reported here constitute a worst
case since we have made no effort to optimise Nowra. It
is likely that significant improvements can be made with
relatively little effort. Of course we will probably never ap-
proach the performance of the C version.

7. Conclusion

The Nowra design constitutes just one data point in the
space of possible Odin re-implementations. Undoubtedly,
other developers would come up with different designs.
Similarly, Odin’s domain-specific languages are just two
among many. Experiences applying Haskell to other lan-
guages will obviously be different. Nevertheless, some gen-
eral conclusions seem to be warranted since this case study
was able to consider questions not possible in most previous
work in embedding domain-specific languages in functional
languages, because the language design implementation al-
ready existed.

Specifically, since the design of Odin predates Nowra by
many years, we were able to exercise the modelling capa-
bilities of the functional language without being tempted to
change the domain-specific language. Of course, we had
to react to some constraints placed on us by Haskell but
the general flavour and expressiveness of Odin’s languages
have been retained. Because the Odin implementation al-
ready existed, we were able to evaluate our new design to
demonstrate the benefits and drawbacks of the embedding
approach. We saw that we were able to implement Nowra in
a relatively small amount of code compared to the Odin im-
plementation, making good use of many features not present
in C. On the other hand, we saw that the runtime perfor-
mance of Haskell for this application is significantly worse
than the C implementation. We also would have liked the
ability to extend function and data type definitions in differ-
ent modules to achieve proper modularity.
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