
The sbt-rats Parser Generator Plugin for Scala (Tool Paper)

Anthony M. Sloane Franck Cassez Scott Buckley
Programming Languages and Verification Group

Department of Computing
Macquarie University, Australia

Anthony.Sloane@mq.edu.au, Franck.Cassez@mq.edu.au, Scott.Buckley@mq.edu.au

Abstract
Tools for creating parsers are a key part of a mature language
eco-system. Scala has traditionally relied on combinator li-
braries for defining parsers but being libraries they come
with fundamental implementation limitations. An alternative
is to use a Java-based parser generator such as ANTLR or
Rats! but these tools are quite verbose and not ideal to use
with Scala code. We describe our experiences with Scala-
focused parser generation that is embodied in our sbt-rats
plugin for the Scala Build Tool. At its simplest, sbt-rats pro-
vides a bridge to the Rats! parser generator for Java. On
top of this bridge, we have a simple grammar definition
notation that incorporates annotations for tree construction
and pretty-printing. As well as generating a Rats! grammar,
sbt-rats can optionally generate case class definitions for the
tree structure and a pretty-printer defined using our Kiama
language processing library. We explain the sbt-rats gram-
mar notation and describe our positive experiences using it
to define grammars for LLVM assembly notation and the
SMTLIB input/output language for SMT solvers.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Parsing

Keywords Parsing expression grammars, Scala build tool.

1. Introduction
Scala has traditionally relied on a parser combinator library
that directly encodes grammars and semantic actions.1 The
standard library is convenient but builds inefficient parsers
that essentially interpret the grammar. The libraries fast-

1 https://github.com/scala/scala-parser-combinators

parse2 and parboiled3 gain performance by using more opti-
mised implementations and macros, respectively.

sbt-rats is a Scala Build Tool (sbt) plugin that brings
parser generation to Scala. Instead of analysing and trans-
lating individual parser definitions, a generation approach
can apply more holistic optimisation techniques that rely on
analysing the whole grammar. Code and documentation can
be found at the project site.4

sbt-rats is based on the Rats! parser generator [4]. Rats!
transforms parsing expression grammars [3] into Java imple-
mentations of packrat parsers [2]. Parsing expression gram-
mars work at a character level so they incorporate both lex-
ical and phrase structure analysis rather than defining these
components separately.

At it simplest, sbt-rats allows Rats! grammars to be in-
cluded in sbt projects. It takes care of automatically running
Rats! and including the generated Java in the build.

Unfortunately, Rats! grammars are verbose and Rats!
does not have built-in support for common tasks: tree rep-
resentation and pretty-printing. In this paper we focus on
a new high-level syntax formalism that incorporates all of
these aspects in a single definition. These syntax definitions
are much simpler than equivalent Rats! grammars since de-
tails such as semantic action code are not necessary.

sbt-rats translates a syntax definition into a Rats! parser
specification which is further translated by Rats! into a
Java implementation. sbt-rats optionally applies some post-
processing to make the Java implementation more useful
from Scala, such as replacing the Rats! implementation of
lists with standard Scala ones. sbt-rats can generate Scala
implementations of the tree representation and pretty-printer.

Figure 1 illustrates a typical use of an sbt-rats syntax def-
inition and the components that are generated from it. We’ve
been using sbt-rats in the implementation of a verification
tool for C programs via LLVM IR code. LLVM IR assem-
bly code is parsed, represented and pretty-printed by com-
ponents generated by sbt-rats. Using sbt-rats achieves con-

2 http://www.lihaoyi.com/fastparse
3 https://github.com/sirthias/parboiled
4 https://bitbucket.org/inkytonik/sbt-rats

Figure 1. sbt-rats for processing LLVM IR assembly code.

siderable economy of expression since roughly 500 lines5

of syntax definition generate over 10,000 lines of Java and
Scala code. The generated Rats! grammar is more than 1500
lines long. Our LLVM parser is not precisely equivalent to
the assembly parser in the LLVM code base but, for compar-
ison, the latter consists of more than 5000 lines of C++ code
in the lexical analyser and parser.

2. JSON Grammar Example
Figure 2 shows an sbt-rats syntax definition for JSON that

illustrates most of the available notations. Figure 3 shows the
syntax tree classes that are used by the generated parser to
represent JSON values.

We assume the reader is familiar with extended BNF-
style grammars and regular expression operators. Literals
in an sbt-rats syntax definition can be delimited with either
single or double quotes. This distinction is not meaningful
for parsing but affects pretty-printing (Section 3).

sbt-rats uses lookahead operators that are inherited from
Rats!. The ! operator specifies a negative lookahead, con-
suming no input if its argument does not match. (The & oper-
ator specifies a positive lookahead.) For example, in the defi-
nition of StrChars (line 19 of Figure 2) negative lookahead
is used with a wildcard operator _ to match one or more char-
acters that are not a double quote. This definition is similar
to the regular expression [^"]+ but in general the lookahead
operator is more powerful since its argument can be an arbi-
trary expression. These operators are also used by sbt-rats to
define the end of file symbol EOF to simply be !_.

sbt-rats also adds operators to specify separated lists.
The binary ** operator in the definitions of JArray and
JObject (lines 13 and 14) specifies possibly empty sep-
arated sequences. (There is also the ++ operator for non-
empty separated sequences.) E.g., a JArray is a possibly

5 Reported line counts include only non-commented, non-blank lines.

1 JSON = Spacing JValue EOF.

2

3 JValue = ’true’ {JTrue}

4 | ’false’ {JFalse}

5 | ’null’ {JNull}

6 | JObject

7 | JArray

8 | StringLit {JStr}

9 | Number.

10

11 JArray : JValue = ’[’ JValue ** ’,’ ’]’.

12 JObject : JValue = ’{’ JPair ** ’,’ ’}’.

13

14 JPair = StringLit ":" JValue.

15

16 StringLit : Token =

17 ’"’ (StrChars / Escape)* ’"’.

18

19 StrChars : String = (!’"’ _)+.

20

21 Escape : String =

22 ’\\’ [\"/\\bfnrt]

23 | ’\\u’ Hexit Hexit Hexit Hexit.

24

25 Hexit : String = [0-9a-fA-F].

26

27 Number : JValue =

28 NumberToken {

29 JNumber,

30 1: Double.parseDouble : Double

31 }.

32

33 NumberToken : Token =

34 [+\-]? Integral Fractional? Exponent?.

35

36 Integral : String = ’0’ | [1-9] Digits?.

37 Fractional : String = ’.’ Digits.

38 Exponent : String = [eE] [+\-]? Digits.

39 Digits : String = [0-9]+.

40

41 Spacing : Void = Space*.

Figure 2. sbt-rat syntax definition for JSON.

empty comma-separated sequence of values inside square
brackets (line 11).

sbt-rats distinguishes between grammar symbols that pro-
duce a syntax tree node, those that produce a string and void
symbols that produce no value. Apart from the type of value
produced, the main difference between these kinds of sym-
bol is the handling of spacing.

sealed abstract class ASTNode extends Product

case class JSON(jValue : JValue) extends ASTNode

sealed abstract class JValue extends ASTNode

case class JTrue() extends JValue

case class JFalse() extends JValue

case class JNull() extends JValue

case class JObject(optJPairs : Vector[JPair]) extends JValue

case class JArray(optJValues : Vector[JValue]) extends JValue

case class JStr(stringLit : String) extends JValue

case class JNumber(numberToken : Double) extends JValue

case class JPair (stringLit : String, jValue : JValue) extends ASTNode

Figure 3. Classes for tree representation of JSON.

Tree-valued symbols implicitly allow arbitrary spacing
between their constituents. In the example, JSON, JValue,
JArray, JObject, JPAir and Number are tree symbols.

Since the JSON symbol is defined by a single alternative,
its tree nodes will be built using a JSON constructor. JValue
has many alternatives (lines 3–9) so JValue will be an ab-
stract class with sub-classes for each alternative. The con-
structor name is given in braces after the alternative. For
example, a true literal is represented by the JTrue sub-
class of JValue. The definitions of JArray, JObject and
Number specify their type to be JValue (lines 11, 12 and
27) so these constructors will also be sub-classes.

Number illustrates a more complex tree symbol definition
(lines 27–31). The constructor is JNumber. The rest of the
definition specifies processing that is to be performed on the
recognised input text. In this case the first argument of the
JNumber constructor is to be produced by processing the
input using parseDouble to obtain a Double value.

String symbols do not implicitly allow spacing within
their constituents. Regular expression notation can be used
to define string symbols (lines 22, 25, 34, 36–39). A token
symbol is simply a string symbol that is immediately fol-
lowed by spacing (lines 16 and 33).

Void symbols are defined as for string symbols but their
values are discarded. E.g., Spacing is defined to be zero or
more spaces (line 41). The definition of Space is provided
by default by sbt-rats, including tabs and similar characters
that play the same role as actual space characters.

Comments can be defined using the full notation. If com-
ments are a spacing alternative they can appear between any
pair of symbols. For example, the following rules specify
spacing similar to Java but include nesting of multi-line com-
ments. (The symbol EOL matches end of line.)

Spacing : Void = (Space / Comment)*.

Comment : Void = SLComment / MLComment.

SLComment : Void = "//" (!EOL _)* (EOL / EOF).

MLComment : Void = "/*"

(MLComment / !"*/" _)*

"*/".

An option controls whether sbt-rats generates syntax tree
classes or not. Figure 3 shows the classes that are generated
by sbt-rats for the JSON example. If the default definitions
are not sufficient, perhaps because methods need to be in-
cluded, a developer can turn the option off and add defini-
tions of classes with the same names to the project.

3. Pretty-Printing
In applications of tree-structured data it is common to output
that data as text. This might be for debugging or maybe as
user-level output. sbt-rats can generate pretty-printers from
syntax definitions. The pretty-printers are implemented us-
ing functional pretty-printing combinators that are part of
our Kiama language processing library [5, 6].

sbt-rats has a convention-based pretty-printing approach.
Most of the information about how to pretty-print is deter-
mined automatically from the syntax definition. E.g., lexi-
cal symbols pretty-print as the text that they matched. Lit-
erals ’foo’ pretty-print as themselves. A sequence of tree
symbols pretty-prints as a sequence of each symbol pretty-
printed separately.

These conventions are enough to get a long way toward
acceptable pretty-printed output. sbt-rats augments the syn-
tax definition with formatting directives to get the rest of the
way. (A similar approach was developed independently for
object grammars in the Ensō project [7].)

The directives sp and \n can be used to show where
an extra space or possible line break should be inserted.
(A double-quoted literal "bar" is short-hand for ’bar’ sp

which avoids many formatting directives in practice.) The
directive nest(e) specifies that the pretty-printed form of
e should be indented one level more than its surroundings.
The line width which determines where line breaks have to
appear can be configured by a run-time option. Similarly, the
size of an indentation level can be configured.

Using formatting directives we can specify that JSON
array values should print with each value or bracket on a
separate line and with the values indented with respect to
the brackets.

[

{

"name": "Joe Bloggs",

"age": 27.4,

"keywords": [

"cycling",

"jazz"

]

}

]

Figure 4. A pretty-printed JSON value.

’[’ nest((\n JValue) ** ’,’) \n ’]’

An analogous rule suffices to pretty-print objects. It is
enough to replace the right-hand sides of the two rules on
lines 11 and 12 of Figure 2 with the new versions and leave
the other definitions unchanged. Figure 4 shows an example
of JSON output from this generated pretty-printer.

4. Application: MQ-SCALA-SMTLIB
We have been using sbt-rats to aid in the interaction between
our verification tool and SMT solvers via the SMTLIB stan-
dard [1].6 sbt-rats syntax definitions describe the form of in-
put/output offered by SMTLIB compliant solvers. The com-
munication between the solvers and the tool sends pretty-
printed SMTLIB terms and parses the responses.

A similar project SCALA-SMTLIB7 used a hand-coding
approach. The SCALA-SMTLIB code base includes lexer,
parser and pretty-printer components that are 378, 1221 and
1073 lines, respectively, for a total of over 2500 lines.

In our implementation, MQ-SCALA-SMTLIB, we re-
placed the earlier hand-coded lexical analysis, parsing,
and tree construction components with code generated by
sbt-rats. Our sbt-rats syntax definition in MQ-SCALA-
SMTLIB has 468 lines, with much simpler and more main-
tainable definitions than the equivalent hand-coded coun-
terparts in SCALA-SMTLIB. The automatically generated
Java parser has 11017 lines, the pretty-printer 372 lines and
the syntax-tree classes 250 lines.

5. Other Features
The earlier example did not use some features of sbt-rats
which we briefly mention here.

Rats! calculates positions for parsed structures. If Kiama
and Scala trees are being used, sbt-rats adds these positions
to Kiama’s position store from which subsequent processing
can access them.

Block symbols allow data to be parsed whose length is
determined by another symbol. We can use this feature to
write a syntax definition for PNG image file chunks where
the length of the Data field is the value of the Length field.

6 http://smtlib.cs.uiowa.edu
7 https://github.com/regb/scala-smtlib

Chunk = Length Type Data[1] CRC

{1: strToInt : Int}.

The generated Rats! semantic action for this rule calls out to
a method that reads the bytes to build the Data field.

Rats! has limited support for left recursion. sbt-rats sup-
ports precedence and associativity annotations. For example,
in a rule for expressions (Exp), the following specifies a left
recursive addition operator at precedence level 2.

Exp "+" Exp {Add, left, 2}

The generated Rats! rule iterates the tail (i.e., "+" Exp) to
build a right recursive action structure and executes those ac-
tions to build the left recursive structure. The annotations are
also used to restore precedence and associativity in pretty-
printing, and to eliminate unnecessary parentheses.

6. Conclusion
Our experience so far shows that sbt-rats provides consid-
erable help when building tools that process tree-structured
data. The new syntax definition notation is much less ver-
bose than the Rats! grammar notation to which it is trans-
lated. Performance seems to be good compared to the library
approach, but we have not conducted detailed benchmark-
ing. Future plans include supporting the modularity features
of Rats!, retaining Void symbols in parsed structures so
that things like comments can be preserved, and generating
grammar-based string interpolators.

References
[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-

LIB Standard: Version 2.5. Technical report, Department of
Computer Science, The University of Iowa, 2015. Available at
www.SMT-LIB.org.

[2] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear
time, functional pearl. In ACM SIGPLAN Notices, volume 37,
pages 36–47. ACM, 2002.

[3] Bryan Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In ACM SIGPLAN Notices, volume 39,
pages 111–122. ACM, 2004.

[4] Robert Grimm. Better extensibility through modular syntax. In
ACM SIGPLAN Notices, volume 41, pages 38–51. ACM, 2006.

[5] Anthony M. Sloane. Lightweight Language Processing in
Kiama. In Generative and Transformational Techniques in
Software Engineering III, number 6491 in Lecture Notes in
Computer Science, pages 408–425. Springer Berlin Heidel-
berg, January 2011.

[6] Anthony M. Sloane and Matthew Roberts. Oberon-0 in Kiama.
Science of Computer Programming, 114:20–32, December
2015.

[7] Tijs van Der Storm, William R Cook, and Alex Loh. Object
grammars. In International Conference on Software Language
Engineering, pages 4–23. Springer, 2012.

