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Abstract

We present a method for profiling programs that are written using domain-
specific languages. Instead of reporting execution in terms of implementation
details as in most existing profilers, our method operates at the level of the prob-
lem domain. Program execution generates a stream of events that summarises
the execution in terms of domain concepts and operations. The events enable us
to construct a hierarchical model of the execution. A flexible reporting system
summarises the execution along developer-chosen model dimensions. The result
is a flexible way for a developer to explore the execution of their program with-
out requiring any knowledge of the domain-specific language implementation.

These ideas are embodied in a new profiling library called dsprofile that is
independent of the problem domain so it has no specific knowledge of the data
and operations that are being profiled. We illustrate the utility of dsprofile by
using it to profile programs that are written using our Kiama language process-
ing library. Specifically, we instrument Kiama’s attribute grammar and term
rewriting domain-specific languages to use dsprofile to generate events that re-
port on attribute evaluation and rewrite rule application. Examples of typical
language processing tasks show how domain-specific profiling can help to diag-
nose problems in Kiama-based programs without the developer needing to know
anything about how Kiama is implemented.
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1. Introduction

All modern computer code is executed at a different level of abstraction than
it is defined. It is the job of a compiler or interpreter to translate between the
two levels of abstraction. Profiling tools for general-purpose languages routinely
bridge this abstraction gap by presenting the execution of a program in terms
of the program code, not in terms of the lower-level execution platform. For
example, gprof [1] and many tools inspired by it base their reports on the func-
tions that appear in the source code of the program. A developer can see which
functions are called, how much execution time they consume, and how control
flows between them. A gprof profile does not report on lower-level details such
as machine instructions, stack frames or register usage.

Executable domain-specific languages (DSLs) [2] are no exception to this
requirement for profilers to bridge an abstraction gap. In fact, the burden on
DSL profilers is greater because DSLs are based on higher-level abstractions
than general-purpose languages. Just as we want gprof to present function-level
information and not details of the implementation of those functions, a DSL
profiler should report at the level of domain-specific abstractions and not at
the DSL implementation level. For example, the implementation language for
the DSLs in this paper is Scala [3], so object creations and method calls are
performed as a DSL program executes. However, objects and methods are not
concepts of the DSLs, so a gprof-style profiler for Scala would not be appropriate
for DSL profiling since it would require a DSL user to understand how the DSL
is implemented. Instead, we aim to make it possible to construct profilers that
collect and present information that we can reasonably expect a DSL user to be
familiar with.

To this end we have developed a new general method for building DSL
profilers with the following aspects that generalise those used in gprof-style
profilers:

1. A hierarchical event-based model of program execution. The events in the
model represent instances of domain-specific program operations being
applied to domain-specific data. The inclusion relation encoded by the
hierarchy represents the extent to which operations use other operations,
generalising gprof-style tools that present execution as a control-flow based
hierarchy of function calls.

2. Domain-specific event dimensions. Each model event has a set of values
associated with it that distinguish it from other events of the same type.
The values belong to dimensions that are chosen by the profiler author to
be appropriate for the domain. Dimensions generalise the fixed properties
such as function name that are used by a gprof-style profiler.

3. A simple query language and reporting framework. Developers query the
execution of a program by nominating one or more dimensions of interest.
A report generator summarises the events of the execution in terms of
the nominated dimensions. Events with the same value for a nominated
dimension are aggregated in the report. This aggregation generalises that
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performed by a gprof-style profiler to aggregate information pertaining to
each function in a program.

All of these aspects are independent of the problem domain that is addressed
by the DSL, so the approach is applicable to any executable DSL. We have
implemented them in our new dsprofile library. To keep our examples concrete,
we use DSLs from the software language engineering domain in the examples
in the rest of the paper. Specifically, we describe how we have used dsprofile to
add profiling support to our Kiama language processing library [4]. Examples
are chosen from typical language processing tasks that use Kiama’s attribute
grammar and strategy-based term rewriting DSLs.

The rest of this introduction briefly introduces the attribute grammar and
term rewriting DSLs by way of simple programs and profiles of those programs.
Section 2 begins the paper proper with a detailed description of the execution
model, of how event information is aggregated to produce reports, of our im-
plementation in dsprofile, and how dsprofile is used in Kiama. Sections 3 and
4 use examples based on a version of Java to show how profiling of attribute
grammars and term rewriting, respectively, can yield valuable information about
program execution when we implement typical language processing tasks. The
paper concludes with a review of related work (Section 5) and an examination
of directions for future extensions (Section 6).

1.1. Attribute grammars

Attribute grammars promote a view of tree decoration based on declarative
equations defined on context-free grammar productions [5]. An attribute is
defined by equations that specify its value at a node N as a function of constant
values, the values of other attributes of N, and the values of attributes of nodes
that are reachable from N. Provided that sufficient equations are defined to cover
any context in which the node can occur, we obtain a declarative specification
of an algorithm that can be used to compute the attribute of any such node.
This approach to computation on structures has been shown to be extremely
powerful. Recent applications that use attribute grammars heavily are XML
integrity validation [6], protocol normalization [7], Java compilation [8], image
processing [9], and genotype-phenotype mapping [10].

Consider the following simple abstract tree structure for constant expressions
defined in Scala:

abstract class Exp

case class Num(i : Int) extends Exp

case class Add(l : Exp, r : Exp) extends Exp

case class Mul(l : Exp, r : Exp) extends Exp

Using this AST definition, the expression 3 + 4 * 5 can be represented by the
value Add (Num (3), Mul (Num (4), Num (5))).

The value of an expression can be defined as an attribute in Kiama as follows:
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val value : Exp => Int =

attr {

case Num(i) => i

case Add(l, r) => value(l) + value(r)

case Mul(l, r) => value(l) * value(r)

}

Kiama’s attr operation takes care of caching attribute values, detecting depen-
dency cycles, etc. (For full details see our paper on Kiama’s attribute grammar
library [11].)

Similarly, an attribute that returns true if and and only if an expression has
a zero value can be defined as follows:

val iszero : Exp => Boolean =

attr {

case n => value(n) == 0

}

A single attribute definition such as for value or iszero is usually fairly
simple, but in realistic applications the effect of an attribute is intricately in-
tertwined with that of many other attributes. The value of an attribute A is
ultimately determined not just by A’s equations, but by the equations of any
attribute on which A’s equations transitively depend. Thus, the computations
that cooperate to compute a value of A are potentially dispersed throughout
the attribute grammar. This dispersal means that it is non-trivial to determine
what an attribute value is or even how an attribute is calculated just by looking
at the equations.

Powerful extensions of the original attribute grammar formalism make this
problem worse. Equations in the original conception of attribute grammars
can only refer to attributes of symbols that occur in the context-free grammar
production on which the equation is defined. In higher-order and reference at-
tribute grammars the value of an attribute can itself be a reference to a node
upon which attributes can be evaluated [12, 13]. This extension is particu-
larly useful when defining context-sensitive properties such as name binding or
programmer-defined operator precedence. This power comes at a price, how-
ever, because it means that more parts of the grammar are in play when we are
trying to understand a particular attribute and how it is computed.

The situation is complicated even more by the fact that many modern
attribute grammar systems use a dynamically-scheduled evaluation strategy,
which precludes accurate static analysis. Some classes of attribute grammars
submit to static dependence analysis that enables evaluation strategies to be
computed in advance of running the evaluator [14]. One can imagine tools
based on this static analysis that would assist with understanding the evalu-
ation process. More recently, however, attribute grammar tools and libraries
have mostly used an approach where the evaluation strategy is determined at
run-time [11, 15, 16, 17]. This dynamic approach admits more grammars than

4



does a static approach, some algorithms are easier to express, and features
such as higher-order and reference attributes are easier to support. However,
a dynamically-scheduled approach also means that an accurate static analysis
is not possible. Instead, dynamic analysis is necessary since evaluation will be
influenced by the attribute values, which will in turn be influenced by the input.

Our profiling system enables data to be collected as the program executes
and presents it in a simple tabular format. For example, suppose that we are
interested in the execution of the following code where exp is the tree for 3 +

4 * 5:

println (iszero (exp))

println (value (exp))

Running this code under the control of the profiler described in this paper
collects information about every attribute evaluation and their dynamic depen-
dencies. We can use the query “name cached” to ask for a profile using as the
primary dimension the name of the attribute and as the secondary dimension
the cached dimension that records whether a computed attribute value has been
obtained from the attribute’s cache or not. The profile for this run includes the
following table that shows aggregated information for the name dimension:

By name:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

0 97.3 0 23.4 0 73.8 1 14.3 iszero

0 76.6 0 76.6 0 0.0 6 85.7 value

The table summarises the run-time by apportioning it to the attributes. Each
row first shows the total time taken by the evaluation of the attribute as an
absolute time and a percentage. The next four columns show the portions
allocated to the equations of the attribute itself (Self) and of the attributes
that those equations used (Desc for “descendants”). The final two columns
show the number of times each attribute was evaluated.

We can see that the iszero attribute is evaluated once and most of its time
is taken up by attributes that it uses. The value attribute is evaluated six times
which is what we would expect (once for each of the five nodes in the tree to
help print the iszero value of the root, and once again at the root to print the
value itself. Thus, this profile allows us to confirm that the program is behaving
as we would expect.

The profile also contains a table showing the secondary cached dimension
aggregated by the first dimension values:

By cached for iszero:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %
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0 23.4 0 23.4 0 0.0 1 14.3 false

By cached for value:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

0 73.8 0 73.8 0 0.0 5 71.4 false

0 2.7 0 2.7 0 0.0 1 14.3 true

From this table we can see that the iszero value was not obtained from its
cache, but that one of the value calls was since the value at the root has
already been calculated while computing the iszero value.

These sorts of profiles reveal many details about how an attribute performs
and bridge the gap between the way the DSL is implemented and the user’s
understanding of their program. We present larger attribute grammar examples
from the language engineering domain in Section 3.

1.2. Strategy-based rewriting

Term rewriting is concerned with tree transformation [18]. In this paper we
focus on strategy-based rewriting in the style of the Stratego language [19, 20],
but the ideas should transfer easily to other forms of rewriting. Strategies
attempt to rewrite a tree and either succeed and produce a new tree, or fail. The
simplest form of strategy is a rewrite rule that describes how to match certain
tree structures and rewrite them into new structures. A rewrite rule fails if the
match fails. More complex strategies are built using operators. For example, a
choice operator allows the success or failure of a strategy to guide future rewrites.
Generic traversal operators allow transformations of whole trees to be written in
a concise way that only mentions relevant structure. Term rewriting has been
widely used [21] and recent application areas include integrated development
environments [22] and speech recognition [23].

We can easily define rewriting transformations on the arithmetic expression
AST defined in Section 1.1. For example, we can write a simplifier for expres-
sions that replaces an expression with a simplified form if addition by zero or
multiplication by zero or one is present:

val simplify =

rule {

case Add (Num (0), e) => e

case Add (e, Num (0)) => e

case Mul (Num (1), e) => e

case Mul (e, Num (1)) => e

case Mul (Num (0), _) => Num (0)

case Mul (_, Num (0)) => Num (0)

case n => n

}
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Kiama’s rule operation defines a rewrite rule based on the user-supplied cases.
The last case ensures that a node is left alone if no optimisation is possible.
(For more details on Kiama’s rewriting library see Stratego [19, 20] and our
comparison between Kiama and Stratego [24].)

We can use the simplifier in a more complex strategy that applies it across
a whole AST using Kiama’s bottomup library function.

val optimise = bottomup (simplify)

bottomup takes care of details such as traversing the AST, freeing the user from
programming the traversal.

By themselves, rewrite rules such as simplifier and strategies such as
optimise are usually fairly simple. However, the transformation process de-
scribed by groups of cooperating strategies can be very complex. For example,
a generic traversal like bottomup traverses the tree in a specific way which will
be influenced by the behaviour of its argument strategy. It is often hard to
understand from the strategies themselves exactly where in the tree rewrites
will happen or why they don’t happen as expected at a particular tree node. In
fact, the errors that occur in term rewriting are so particular that there has been
specific work to catalogue them [25] and on static analysis to identify them [26].

Understanding where the strategies are applied and whether they succeed
or fail is a big help when debugging rewrite systems. Just as it collects infor-
mation about attribute evaluations, our profiling system monitors rewrite rule
and strategy applications. For example, we obtain the following profile when
we apply the optimiser to the expression 0 + (1 * (5 + 4) + 0) and ask for
the “name” dimension:

By name:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

2 99.7 0 3.2 2 96.5 1 2.4 optimise

2 96.3 1 52.8 1 43.5 14 33.3 all

2 91.1 1 39.7 1 51.4 13 31.0 bottomup

0 4.3 0 4.3 0 0.0 14 33.3 simplify

As for the attribute profiles, the rewriting profile shows the times and execution
counts for each rule or strategy. (all is a library operation that is used in the
definition of bottomup.) We apply fourteen simplifications since the rewrite is
applied to every node in the tree: five integer leaves, five expressions containing
those leaves, and four internal expression nodes. As could be expected for this
simple example, we spend most of the time traversing the tree, not performing
simplifications.

These sorts of profiles reveal much about how rewrite rules and strategies
apply and interact. As for the attribute grammar DSL, they bridge the gap
between the way the rewriting DSL is implemented and the user’s understand-
ing of their program. We present larger rewriting examples from the language
engineering domain in Section 4.
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1.3. An alternative: HPROF

Of course, profiling tools are available for the platform on which the Kiama
is built (i.e., Java and Scala). Unfortunately, these profilers are not capable of
effectively illuminating the execution of code defined in the Kiama DSLs because
they report their results at the wrong abstraction level.

To provide direct evidence of this assertion, we used the built-in Java pro-
filer HPROF to profile the optimisation from the previous section. Since the
computation runs very quickly we repeated it one hundred times so that there
was something to profile. A very small part of the HPROF profile is shown in
Figure 1. The full profile runs to over eight hundred lines because there is one
line for each Java method called. In the figure we see some Kiama methods
used in rewriting plus some Scala collection methods.

0.01% 91.58% 2828 337738 org.kiama.rewriting.Strategy$$anonfun$1.<init>

0.01% 91.59% 4060 301904 java.lang.Character.toLowerCase

0.01% 91.60% 4961 308045 scala.collection.AbstractTraversable.genericBuilder

0.01% 91.61% 4863 308043 scala.collection.immutable.List$.newBuilder

0.01% 91.62% 930 313536 scala.reflect.internal.Scopes$Scope...

0.01% 91.63% 1414 337830 org.kiama.rewriting.RewriterCore$$anonfun$all$1...

0.01% 91.64% 4242 337851 scala.collection.mutable.ListBuffer.$plus$plus$eq

0.01% 91.66% 4242 337852 scala.collection.mutable.ListBuffer.result

Figure 1: A very small part of the profile generated by the Java run-time when running the
optimisation of Section 1.2 one hundred times. The query string “hprof=cpu=times” was
used to generate the profile.

It is evident that the profile in Figure 1 is not of much use to a DSL user
compared to the profiles that we presented earlier. If that user has knowledge of
the Kiama implementation and of the way in which Scala programs are compiled
to the Java virtual machine it is possible for them to be able to find the calls
that correspond to the application of their rewriting strategy. However, that
knowledge is very unlikely to be available so this sort of profile is almost always
useless. In contrast, the profiles produced by Kiama using dsprofile allow the
user to explore the execution of the rewrite at an appropriately high level of
abstraction.

1.4. Previous work and available software

This paper is an extended and revised version of one that appeared in the
proceedings of the 2012 International Conference on Software Language Engi-
neering [27]. All of the sections have been extensively revised and expanded,
but the material relating to rewriting systems is new, most notably Section 4.
All examples now use Kiama notation.

Code and documentation for our implementation of the profiling framework
can be found at http://bitbucket.org/inkytonik/dsprofile. This paper is
based on version 0.3 of dsprofile.

Kiama can be obtained from http://kiama.googlecode.com. This paper
is based on version 1.5.2 of Kiama. Since the SLE paper the profiling code for
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attribute grammars has been added to the main Kiama distribution. Support
for profiling circular attributes and rewriting has been added.

2. Domain-Specific Program Profiling

Profiles such as those shown in the introduction reveal a lot about the exe-
cution of a DSL program in a form that is easy to absorb. Varying the choice
of dimension in a query enables us to tailor the profiles to the particular inves-
tigation that we are carrying out. In this section we describe in detail how the
profiles are constructed, particularly how the program execution is modelled,
how reports are produced, and what must be done in Kiama to use the pro-
filer. Sections 3 and 4 present examples of using the Kiama profiler in realistic
software language engineering applications.

Our approach is to instrument programs to generate domain-specific events
while they run. The events are grouped to form a record-based model of the
execution in domain-specific terms. Reports are generated from the model by
summarising records along developer-specified dimensions using a simple query
language. In Kiama we are focusing on profiling for attribute grammars and
term rewriting, but profilers can be built for any domain by varying the events
that are generated and the dimensions that are used to summarise the execution.

Section 2.1 describes the data collection method and the record-based model
of execution. Section 2.2 describes the query language and explains how the
model is used to produce reports. The implementation of the dsprofile library
is discussed in Section 2.3, Section 2.4 describes how we are using dsprofile in
Kiama, and the performance of the implementation is analysed in Section 2.5.

2.1. Data collection and execution modelling

The data collection approach is based on a simple event model. We distin-
guish between Start events that signal the beginning of some program activity
and Finish events that signal the end of an activity. We assume that the
program can be modified so that Start and Finish events will be generated
at appropriate times. Usually these events would be generated by the DSL
implementation, but they can be generated from user code as well.

Each event captures the event kind (Start or Finish), the time at which
it occurred, the domain-specific type of the event, and a collection of arbitrary
data items associated with the event instance. Each data item is tagged with
a unique dimension. The dimensions that an event has at generation time are
its intrinsic dimensions, to differentiate them from derived dimensions that are
calculated later.

For example, in the attribute grammar case, a single attribute evaluated
event type is sufficient. We abbreviate this event type by AttrEval in the
profiles. A Start instance of this event type is generated just before the evalu-
ation of an attribute begins, and a corresponding Finish instance is generated
just after evaluation of an attribute ends. Attribute evaluation events have the
following intrinsic dimensions:
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• attribute: the attribute that was evaluated,

• subject : the node at which the attribute was evaluated,

• parameter : the value of the attribute’s parameter (if any),

• value: the value that was calculated by the attribute’s equations, and

• cached : whether the value was calculated or came from the attribute’s
cache.

Generation of the Start event produces an event id which must be used
in the generation of the Finish event as a sanity check that events are prop-
erly nested. The Finish event can have dimensions that were not present in the
Start event. For example, for attribute evaluation the value and cached dimen-
sions are present only in the Finish event since that information is available
only after the evaluation has been completed.

After execution is complete, we collect the events to create a list of profile
records that describe the execution. When we see a Finish event we match
it with the corresponding Start event. Each matching Start-Finish pair is
represented by a single profile record. A record contains the event type, the
time taken between the occurrence of the Start event and the occurrence of the
Finish event, and all of the intrinsic dimensions from the two events.

We also require that the events are generated in a last-in-first-out manner so
that we can automatically construct a hierarchical model of execution. In other
words, if we see a Finish event, it must be the case that the most recently seen
Start event that does not yet have a corresponding Finish event is the one that
corresponds to the new Finish event. If this condition holds, we can regard the
records that are created between a Start event and its corresponding Finish

event as the descendants of the new profile record. This hierarchical relationship
is used to derive dimensions that relate records to each other; for example, to
summarise attribute dependencies (Section 3.6).

To make this description concrete, consider the execution of the attribute
evaluator from the introduction, calculating the iszero attribute and then the
value attribute at the root of the tree representing 3 + 4 * 5. Among the
events generated by this evaluator will be some that document the evaluation
of the iszero and value attributes. A possible execution results in the events
shown in the top table of Figure 2. This trace excerpt describes the seven
attribute evaluations. The first Start event marks the start at time step four
of the evaluation of the iszero attribute at the Add node. That evaluation
requires an evaluation of the value attribute at the same node, which in turn
demands the value attribute at the Num(3) node, and so on. The final attribute
evaluation at time step 11 asks for a value that was already computed at time
step 9 so the computed value can be obtained from the attribute’s cache.

Seven profile records will be created to represent this execution, one for each
attribute evaluation (bottom table of Figure 2). For example, record four tells
us that the evaluation of value at the Mul node took a total of five time units

10



Kind When Attribute Subject Value Cached
Start 4 iszero Add

Start 4 value Add

Start 4 value Num(3)

Finish 5 value Num(3) 3 false
Start 5 value Mul

Start 5 value Num(4)

Finish 6 value Num(4) 4 false
Start 6 value Num(5)

Finish 7 value Num(5) 5 false
Finish 8 value Mul 20 false
Finish 9 value Add 23 false
Finish 10 iszero Add false false
Start 11 value Add

Finish 12 value Add 23 true

Record Time Attribute Subject Value Cached Descs
1 1 value Num(3) 3 false
2 1 value Num(4) 4 false
3 1 value Num(5) 5 false
4 3 value Mul 20 false 2, 3
5 5 value Add 23 false 1, 4
6 6 iszero Add false false 5
7 1 value Add 23 true

Figure 2: Start and Finish events encoding attribute evaluations on the tree representing 3

* 4 + 5 (top) and the profile records that summarise the attribute evaluations encoded by
the events (bottom). Note: the attribute evaluations in the bottom table are ordered by
completion time, not start time.
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and required the evaluations represented by records two and three. Record two
in turn took one time unit and did not require any other evaluations.

2.2. Query language and report generation

The record list produced by the data collection process is a domain-specific
model of the execution. The user can query this model using a simple query lan-
guage whose queries consist simply of an ordered sequence of dimension names.
For example, to produce the first report in the introduction we used the query
“name cached”, referring to the name and cached dimensions.

The report generation process proceeds by considering the records one-by-
one and allocating them to report buckets according to their query dimension
values. All of the records with the same query dimension value end up in the
same bucket and their execution time is accumulated. The descendant infor-
mation allows us to allocate the elapsed time to either the attribute evaluation
represented by a record (self) or to the other evaluations demanded by that eval-
uation (descendants). When the buckets have been collected, a table is printed
wherein each row summarises a bucket and the rows are sorted in decreasing
order of execution time. For example, for the one-dimensional query “name”
the sole table will contain one row for each unique name dimension value.

Multi-dimensional reports are produced by an analogous process. We first
report on the basis of the first query dimension. Then each bucket from the first
dimension table is further summarised according to the second query dimension.
For example, for the “name cached” query, the first table will report on the
name dimension, while the remaining tables will report on the cached value for
each discrete name value. The process continues until there are no more query
dimensions to consider.

The query dimensions can be provided at compile time or a program can
enter a “profiler shell” in which a set of dimensions can be given interactively
and the shell will respond with the reports for those dimensions. This design
allows a data-driven exploration of the records collected during profiling.

Our student Nathan Seal has also developed a graphical profile viewer that
lets the user select dimensions interactively from a graphical user interface.
Profiles can be displayed in various graphical forms such as histograms or pie-
charts.

2.3. Implementation

The profiles presented in this paper were collected using our dsprofile library
which implements our profiling approach as a library in the Scala language. Pro-
files can be generated from code written in any Java Virtual Machine language
but specific support is provided for Scala and Java. Section 2.4 describes how
Kiama uses the library to generate profiles.

An important decision we made in the implementation was to not encode
the available dimensions and the types of their values into the profiling library.
A dimension is represented by a string and a dimension value can be any value.
Including more type information would enable a greater level of safety in the
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event generation and recording code. However, it would tie the library to partic-
ular events and their dimensions. Adding new ones would require updating the
interfaces or a more complex event representation with generic access to typed
dimension values. Our approach is simple and extremely flexible. Instrumenta-
tion code is one line at each event generation site. New events and dimensions
can be added without recompiling the library.

A dsprofile component of around 400 lines of code implements event cap-
ture, record representation, and report generation. The current implementation
stores profile records as instances of a custom class. A generic format such as
XML or JSON could easily be used instead and might be beneficial if the data
was to be exported. As it stands, the event data is only used internally by the
library, so this generality is not needed. We have not used any form of compres-
sion to reduce the space needed to store the profile records, since it has not been
necessary for the test cases we have tried. If space usage becomes a problem,
an on-the-fly approach could be the solution, where aggregation is performed as
events are generated rather than at the end of the execution.

Events are time-stamped using the java.lang.System.nanoTime method
that has nanosecond precision. As in all profiling systems, the measured times
vary from run to run depending on the machine load, but the relative times
are stable. Precise nanosecond times are unlikely to be very useful since they
present too much detail, so the profiler reports times in millisecond units.

Profiles that use intrinsic dimensions can be generated directly from the
profile records. Derived dimensions can be added by overriding the default im-
plementation of library method dimValue that looks up dimension values. The
method is given the dimension name and a reference to the profile record. The
default implementation simply looks up the name in the record’s dimension col-
lection. An overriding implementation can return any value it likes. (Section 2.4
gives an example of how to code a derived dimension.)

The display of aggregated values can also be customised. By default, the
profiler uses the standard Java toString method to obtain a string represen-
tation of a value. That implementation can be replaced by arbitrary code. For
example, we could display subject trees using a pretty-printer instead of using
the default representation. Since these sorts of values can take up a significant
amount of space, they are unlikely to fit in the profile report tables. The report
writer automatically detects when the value strings will not fit. Each such value
is allocated a footnote number which is used in the table. The actual value
string is printed below the table.

2.4. Instrumenting Kiama

dsprofile is independent of the problem domain and the DSL implementa-
tions within that domain. As a concrete example of using dsprofile with sophis-
ticated DSLs, we instrumented our Kiama language processing library [4, 11],
which is written in Scala, to use dsprofile to collect information about attribute
evaluations and rewrites.

For example, to evaluate normal attributes we use the code shown in the top
part of Figure 3 which resides in the cached attribute class. The apply method
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def apply (t : T) : U = {

val id = start (Seq (

"event" -> "AttrEval", "subject" -> t,

"attribute" -> this, "parameter" -> None,

"circular" -> false

))

resetIfRequested ()

memo.get (t) match {

case None =>

reportCycle (t)

case Some (u) =>

finish (id, Seq ("value" -> u, "cached" -> true))

u

case _ => // null

memo.put (t, None)

val u = f (t)

memo.put (t, Some (u))

finish (id, Seq ("value" -> u, "cached" -> false))

u

}

}

def apply (r : Any) : Option[Any] = {

val i = start (Seq (

"event" -> "StratEval", "strategy" -> this,

"subject" -> r

))

val result = body (r)

finish (i, Seq ("result" -> result))

result

}

Figure 3: Kiama code that evaluates attributes (top) and applies rewriting strategies (bottom)
including instrumentation code to generate profiling events using the start and finish calls.
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is called when an attribute is evaluated at a node t of generic type T, returning
a value of generic type U. The code manages the attribute’s cache (memo) and
reports a cycle if this attribute is evaluated again while we are computing its
value. Otherwise, the value is either obtained from the cache if the attribute
has been evaluated before, or is calculated, stored in the cache and returned.

The instrumentation in Figure 3 comprises the call to start and the two
calls to finish, one for each of two cache lookup outcomes. The AttrEval

event dimensions and their values are passed in a sequence using Scala’s arrow
tuple notation; e.g., "attribute" -> this is a tuple comprising the dimension
name and the attribute instance. The id returned by start must be passed
to the corresponding finish call to enable the library to check that events are
properly nested.

Events for term rewriting are generated similarly. The bottom part of Fig-
ure 3 shows the apply method of the rewrite strategy class. This method is
called when a strategy is applied to a subject term r. The method returns an
optional value, representing either failure of the application or success produc-
ing a new subject term. As for the attribute case, start and finish are called
to produce an event for each strategy evaluation.

Overall, the event generation code is a small addition to the Kiama code. In
the attribute grammar there are a total of seventeen calls to start and finish

to deal with the different kinds of attribute evaluation. The rewriting instru-
mentation is much simpler and requires only one call to each of the methods,
since rewriting strategy evaluation is localised in one place.

Since Kiama’s implementation contains the instrumentation, users of Kiama
need to only add a call to the dsprofile library to run their code under profiler
control. For example, to evaluate the iszero attribute from the introduction
on the expression e we write:

profile (iszero (e), Seq ("name", "cached"))

The first argument to profile is the computation that is to be run with profiling
turned on. The second argument is a sequence containing the query dimensions;
when the computation is finished, the profiler will print a report for these di-
mensions. If no query dimensions are provided in the profile call the profiler
will enter a mode where queries can be entered interactively. We can profile a
rewriting computation with a similarly simple call. For example, the profile of
the optimisation from the introduction is produced by the following call, where
e is the expression being optimised:

profile (optimise (e), Seq ("name"))

Calling another dsprofile method causes the profiler to print an event trace,
filtering events by a user-supplied predicate. We omit further discussion of
trace printing since it is not germane to the main topic of the paper.

Around 300 lines of support code in Kiama implements derived dimensions
for events by overriding the dsprofile dimValue method which is responsible
for returning the value of a particular dimension from a profiling record. For
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def dimValue (record : Record, dim : Dimension) : Value =

dim match {

case "subjectHash" =>

checkFor (record, dim, "", "subject") {

case s => s.##

}

}

Figure 4: Kiama implementation of a derived dimension for the hash code of the subject node
of an attribute evaluation or rewriting operation.

example, Figure 4 shows how we implement a “subjectHash” derived dimension
which is useful for distinguishing between two tree node instances that have the
same printed representation. The derived dimension is based on the “subject”
intrinsic dimension used by attribute evaluations and rewriting to report the
node on which the evaluation or rewriting is being performed. checkFor is
provided by dsprofile to check for the presence of a particular dimension in a
record and, if it is present, provide its value to an arbitrary computation. In this
case, the computation simply calls the Scala hash code method ## and returns
its result. While this and other derived dimensions are packaged with Kiama,
it is also possible for DSL users to define derived dimensions in the same way,
thereby allowing them to view their execution in problem-specific terms.

A DSL implementation that is an embedding in a general-purpose language
faces the problem of obtaining access to general-purpose names for use in DSL
messages. For example, in Kiama we need to gain access to the name of an
attribute (e.g., “iszero” in the introduction) so that we can use it if we need to
report a dependency cycle while evaluating an attribute. Similar requirements
apply to Kiama’s term rewriting rules. Earlier versions of Kiama required the
user to specify these names as a string when they defined the attribute or rule.
Current versions of Kiama remove this requirement by gaining access to the
name from the Scala abstract syntax tree using Scala’s macro facility [28]. The
Kiama profiling support uses this name access to implement the “name” derived
dimension that is used in our examples.

2.5. Performance

The performance of a profiling library is not important in production, but
can make a difference to the efficiency of the development process. dsprofile
contains some measures to remove overhead from the data that it gathers. Most
notably, the time overhead of generating events is accumulated as the events
are generated. When the profile is prepared the total overhead is apportioned
evenly to each event and deducted from the event’s total execution time. We use
this approach since it spreads responsibility for the overhead across all events,
rather than to just the event that was being generated at the time when the
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overhead was incurred. Therefore, we avoid allocating responsibility for non-
trivial overhead such as garbage collection to a single event.

To explore the performance of our implementation, we conducted some ex-
periments using an attribute grammar that is much bigger than the expression
language from the introduction or the PicoJava example we use in Sections 3
and 4.

The Oberon-0 example was developed for the tool challenge associated with
the 2011 Workshop on Language Descriptions, Tools and Applications (LDTA).
Oberon-0 is the imperative language subset of the Oberon family of languages
and was originally described by Wirth [29]. The challenge compiler parses and
analyses Oberon-0 programs, then translates correct ones into equivalent pretty-
printed C code. The Kiama Oberon-0 specification can be found in the Kiama
distribution at kiama/src/org/kiama/example/oberon0. It contains the defi-
nitions of fourteen attributes whose definitions use sixty-one separate cases to
define equations.

Our test case was to compile fifty-four Oberon-0 test programs in a single
run of the compiler. None of these programs is very large. Their total repre-
sentation in the Oberon-0 compiler comprises around six thousand AST nodes.
The compiler performs more than thirty-two thousand attribute evaluations to
perform name and type analysis on these trees, so it is a serious test of the
profiling system.

Running the Oberon-0 compiler on this test with profiling completely dis-
abled takes about five to six seconds of elapsed time. Adding the event gener-
ation code to the library, but still with no report generation, doesn’t make a
difference that is noticeable in the usual variation when running from the com-
mand line. We also modified the Oberon-0 compiler to collect the run-time for
just the core compiler driver, thereby removing the time for other operations
such as class loading. We ran all of the Oberon-0 tests in a single run as before,
repeating the run ten times initially to warm up the virtual machine. Then we
ran twenty-four tests, discarded both the slowest two and the fastest two results
to remove any outliers, and averaged over the remaining twenty measurements.
The results showed that the event generation by itself slows the core of the
compiler down by a factor of about 1.4. While this is a significant difference,
the command-line experiment shows that the slowdown is swamped by the time
taken by other operations performed by the program. Thus, we believe that the
instrumentation is practical for gathering data from large test runs.

We also investigated the time taken to produce profile reports. Producing a
profile for the attribute dimension increases the run-time from around eight sec-
onds with profiling turned on but no report generation, to about twelve seconds
with report generation as well. Adding a second subject dimension increases the
total time to over twenty-two seconds. Most of this time is taken by printing
the many tree fragments, which illustrates that report generation time is highly
dependent on the chosen dimensions. We have not performed any optimisation
of the core of the report generator so it is likely that some improvement could
be obtained. Nevertheless, our experiments show that the current performance
is practical for typical interactive uses during development.
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{

class A {

int y;

AA a;

y = a.x;

class AA {

int x;

}

class BB extends AA {

BB b;

b.y = b.x;

}

}

}

Figure 5: A PicoJava program containing a class and two nested classes.

3. Profiling Attribute Evaluation

We now consider in more detail the use of our profiling approach to examine
the execution of non-trivial programs. This section examines name analysis, a
typical software language engineering task, and shows how profiling can help us
to understand the operation of a name analysis attribute grammar implemen-
tation.

3.1. PicoJava

The attribution we consider performs name analysis for a Java subset called
PicoJava. This attribution was originally written as an illustration of reference
attributes in the JastAdd system [30]. The Kiama distribution contains a fairly
direct translation of the JastAdd attribute grammar. We do not intend to
describe Kiama’s attribute grammar DSL [11] in full, but to explain enough to
understand the example. Although the Kiama attribution DSL provides some
syntactic conveniences, in essence attributes in Kiama are normal functions that
memoise their results.

PicoJava contains declarations and uses of Java-like classes and fields, but
omits most of the expression, statement and method complexity of Java. Fig-
ure 5 shows a PicoJava program consisting of a block with a declaration of class
A. Class A contains two nested classes: AA and AA’s sub-class BB. Statements are
limited to simple assignments between named objects which are either fields of
the current object or qualified accesses to fields of other objects.

The problem that is solved by the attribute grammar is to check the uses
of all identifiers. For example, the uses of x in the a.x and b.x expressions
are legal because of the declaration of the x field in AA and the inheritance
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class Program (Block : Block)

class Block (BlockStmts : Seq[BlockStmt])

class BlockStmt

class Decl (Name : String) extends BlockStmt

class TypeDecl (Name : String) extends Decl (Name)

class ClassDecl (Name : String, Superclass : Option[IdnUse],

Body : Block) extends TypeDecl (Name)

class PrimitiveDecl (Name : String) extends TypeDecl (Name)

class UnknownDecl (Name : String) extends TypeDecl (Name)

class VarDecl (Type : Access, Name : String) extends Decl (Name)

class Stmt extends BlockStmt

class AssignStmt (Var : Access, Value : Exp) extends Stmt

class WhileStmt (Cond : Exp, Body : Stmt) extends Stmt

class Exp

class Access extends Exp

class IdnUse (Name : String) extends Access

class Use (Name : String) extends IdnUse (Name)

class Dot (ObjRef : Access, IdnUse : IdnUse) extends Access

class BooleanLiteral (Value : String) extends Exp

Program (

Block (List (

ClassDecl ("A", None (),

Block (List (

VarDecl (Use ("int"), "y"),

VarDecl (Use ("AA"), "a"),

AssignStmt (

Use ("y"),

Dot (Use ("a"), Use ("x"))),

ClassDecl ("AA", None (),

Block (List (

VarDecl (Use ("int"), "x")))),

ClassDecl ("BB", Some (Use ("AA")),

Block (List (

VarDecl (Use ("BB"), "b"),

AssignStmt (

Dot (Use ("b"), Use ("y")),

Dot (Use ("b"), Use ("x"))))))))))))

Figure 6: A class model for the abstract syntax of the PicoJava language (top) and the
abstract syntax tree for the program in Figure 5 (bottom).
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relationship between AA and BB. However, the use of y in b.y is illegal since BB

and AA declare no y field, even though there is a y field in the enclosing class A.
The attribute grammar operates on an abstract syntax tree representation of

the PicoJava program. Our version uses the same AST structure as the original
JastAdd example. A class model for this structure is shown in the top part of
Figure 6. A program contains a sequence of block statements which are either
declarations or statements. Types and variables can be declared. Types are
user-defined classes, primitive types or unknown types that are used for error
cases. Statements are restricted to assignments and while loops. Expressions
only have forms that are relevant for name analysis: basic identifier use and
“dot style” reference to a member of an object.

The bottom part of Figure 6 shows the AST for the program in Figure 5.
Note that the superclass component of a user-defined class is represented by an
optional value which is either Some(c), if the superclass is c, or None, if there
is no declared superclass.

3.2. Name analysis for PicoJava

The attribute grammar that implements name analysis for PicoJava defines
one main attribute decl whose value is the declaration corresponding to a par-
ticular access of a name. decl is a reference attribute that refers to the actual
VarDecl or ClassDecl node in the tree. decl is a synthesized attribute, mean-
ing that it is defined for all productions that define the structure of memory
accesses (for which we define the class Access from which all such productions
inherit).

val decl : Access => Decl =

attr {

case u : Use => u->lookup (u.Name)

case Dot (_, n) => n->decl

}

We first declare the type of the attribute. The decl attribute is defined on
Access nodes and its type is Decl, the common superclass of VarDecl and
ClassDecl. The arrow => is Scala’s function type constructor.

PicoJava accesses come in two varieties: a direct use of a single identifier
(Use) or a field reference with respect to a qualified object access (Dot). A Dot

contains an access defining the accessed object and an identifier use that names
the member that is being accessed.

In the attribute grammar the two varieties of access are selected by two cases
in the pattern matching function that is passed to Kiama’s attr method. The
cases are the attribute equations in a Kiama-based attribute grammar. Normal
Scala pattern matching is used in the cases. For example, the first case uses
a type pattern that matches any Use node and binds it to the name u. The
second case matches any Dot node and binds the name n to the second (Use)
component. The first component is ignored by a wildcard pattern.
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Each case in the attribute definition has a right-hand side that describes how
to compute the attribute for an argument that is selected by that case. Refer-
ences to members of a node are written using a “dot” notation while references
to attributes are written using an “arrow” notation. For example, in the first
case u.Name refers to the string in the Use node. The expression n->decl is
asking for the value of the decl attribute for the node bound to n; the same
expression could be written in normal functional notation as decl(n).

In order to describe how to compute an attribute value, an attribute equa-
tion can refer to any symbols of the associated production to obtain data val-
ues from attributes or intrinsic properties. Expressions can use any facility of
the host environment to compute with these values. The overall effect of the
decl equations is that the relevant declaration is determined by evaluating the
lookup attribute at the rightmost identifier use in the access. For example,
when evaluating decl for the expression a.b.c, which is represented by the
tree Dot(Use("a"),Dot(Use("b"),Use("c"))), we will evaluate decl for b.c,
decl for c and, finally, lookup("c") at the Use("c") node.

3.3. Name lookup

The lookup attribute searches to find the declaration that matches a partic-
ular name. The value of n->lookup(s) is a reference to the node that represents
the declaration of s when viewed from the scope of n, or a reference to a value
of type UnknownDecl if no such node can be found.

val lookup : String => Attributable => Decl = ...

The first argument is the name that is being searched for; we will refer to it
as name in the code below. The second argument is the node at which we are
searching. We indicate that the attribute can be evaluated at any node using the
type Attributable. Usually all node types in the abstract syntax tree definition
inherit from Attributable to obtain members that give generic access to the
tree structure. For example, in the definitions below we use the parent field
that is a reference from a node to its immediate parent node (if any).

lookup is a parameterised attribute, since it depends on the name being
sought. It is also an inherited attribute since its value will be determined by the
context surrounding the node where it is evaluated, not by the inner structure
of that node.

One case is when lookup is evaluated at a Use node.

case i : Use =>

i.parent match {

case Dot (a, i2) if i eq i2 =>

a->decl->tipe->remoteLookup (name)

case p =>

p->lookup (name)

}
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If the use is part of a qualified access via a Dot we must lookup the name in the
type of the access qualifier. This search is achieved by getting the declaration of
the qualifier (a->decl), getting that declaration’s type (->tipe)1, and perform-
ing a remote lookup for the name in that type (->remoteLookup (name)). tipe
returns a reference to the node representing the class type from a declaration.
remoteLookup looks for a name in a class type from the perspective of a client
of that type. We omit the definitions of the tipe and remoteLookup attributes
since those details are not necessary for our discussion.

The second sub-case for Use corresponds to the use of an unqualified name,
so we just continue the search at the parent node to search in the current scope.
This action is also used at any node that is not handled by a more specialised
case.

The remaining cases for lookup propagate requests coming from Use nodes
to the appropriate parts of the tree and trigger searches in blocks and super-
classes. First, we consider the case where the search reaches a block statement.
We use the node’s parent reference to check if the node is at the top level of a
block. If so, we search locally in the block first. If that search fails, or we are
not yet at the top of a block, we move the search to the parent node.

case s : BlockStmt =>

s.parent match {

case b : Block =>

if (isUnknown (b->localLookup (name)))

b->lookup (name)

else

b->localLookup (name)

case p =>

p->lookup (name)

}

If we are searching at a block (as opposed to inside it), we distinguish two
cases. First, the block might be the one for the program as a whole, in which
case we search locally there. Second, the block might be in a class declaration,
in which case we look for a superclass. If there is a superclass we search remotely
in that class and return a declaration found there. If there is no superclass, or
there is one but it has no declaration of the name we are seeking, we move the
search to the parent node.

case b : Block =>

b.parent match {

case p : Program =>

p->localLookup (name)

case c : ClassDecl =>

if ((c->superClass != null) &&

1The identifier tipe is used because type is a Scala reserved word.
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!isUnknown (c->superClass->remoteLookup (name))))

c->superClass->remoteLookup (name)

else

c->lookup (name)

}

3.4. Understanding PicoJava name analysis

Name analysis attribution for PicoJava is a canonical example of reference
attribute grammars [30]. The equations are not lengthy, but their operation
is still quite hard to understand. Some of the difficulty is due to the inherent
complexity of the problem being solved. The tasks of name and type analysis
for a language like PicoJava are intertwined. For example, to look up a name in
the body of a class, we may need to search the superclass type, which involves
performing name analysis on the name that appears in the superclass position
of the class declaration, and so on, while avoiding problems such as cycles in
the inheritance chain.

Given this inherent complexity, it is somewhat surprising that the definitions
are not longer than they are. The main reason for their brevity is the power of
the dynamically-scheduled attribute grammar formalism to abstract away tree
traversal details. When we are writing our equations, we can reason about how
declarations, local and remote lookups, and types relate to each other, with-
out having to work out a particular tree traversal that evaluates the attributes
in the correct order. The attributes are evaluated when their values are first
demanded and caching means that we don’t need to worry about which partic-
ular use of an attribute asks for it first. In contrast, a solution based on tree
traversals implemented by visitors, for example, would have to explicitly plan
which attributes should be evaluated at which time. Developing such a plan is
a non-trivial task for this problem.

It is not possible to completely ignore tree traversal. When we are developing
and debugging the equations, we need help to understand how they function. It
is not enough to just look at each equation by itself, since the effect is achieved
by a combination of many equations. Having some information about what
happens at run-time can reveal much about how the attribute grammar works.
As a simple example, if we knew that our name analyser never examined the
super class of a class when processing the program in Figure 5, we would know
that the equations were not correctly implementing our intent.

3.5. Profiling PicoJava name analysis

In this case, the interesting program behaviour is in terms of attributes, their
values, and so on. Profiles produced as we described in Section 2 enable us to
see which attributes are being evaluated and how they are consuming time in
the name analysis computation.

The simplest profile we can imagine is one that shows us which attributes are
evaluated during a run (query “event name” and look at AttrEval table). The
top of Figure 7 shows this profile for the PicoJava name analyser as it processed
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113 ms total time

31 ms profiled time (28.1%)

231 profile records

By name for AttrEval:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

28 90.3 1 5.4 27 84.9 28 12.1 decl

27 84.9 7 22.2 20 62.7 32 13.9 lookup

14 46.8 12 37.8 2 9.0 19 8.2 localLookup

5 17.4 1 4.6 4 12.8 18 7.8 unknownDecl

4 13.6 2 9.1 1 4.5 7 3.0 remoteLookup

3 10.8 2 6.4 1 4.4 20 8.7 tipe

By type for AttrEval and lookup:

Total Total Self Self Desc Desc Count Count

ms % ms % ms % %

27 84.9 2 8.3 24 76.6 12 5.2 Use

17 53.6 1 3.8 15 49.8 4 1.7 VarDecl

4 15.1 1 3.4 3 11.7 5 2.2 Block

3 9.7 1 3.3 2 6.5 4 1.7 ClassDecl

1 6.1 0 2.2 1 4.0 4 1.7 AssignStmt

1 5.7 0 1.3 1 4.5 3 1.3 Dot

Figure 7: Extracts of profiles produced when the PicoJava name analyser processes the pro-
gram in Figure 5: query “event name” (top) and query “event name type” (bottom).

the program in Figure 5.2 The first part of the profile gives the total run-time
and the time that is accounted for by the profiled attributes. 206 attribute
instances were evaluated in this run.

The profile table shows that the decl attribute and the attributes it uses
consume the vast majority of the time, closely followed by lookup, and further
back, localLookup. The profile reveals a number of areas where further inves-
tigation might be warranted. The localLookup attribute consumes almost a
half of the time which seems excessive. We might investigate whether replac-
ing a linear search by a hashed lookup would improve performance. Also, the
unknownDecl attribute is used to return a special object to represent the case
where a declaration cannot be found. It is worrying that computing this special

2Elapsed time is collected in nanosecond units, but is presented in the profiles as millisec-
onds, so there may be some rounding errors.
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object consumes seventeen percent of the time.
The top of Figure 7 shows just a single dimension: the attribute that was

evaluated. Our profiles can summarise execution across more than one dimen-
sion to reveal more detail. For example, we might want to know the types of
the nodes at which the lookup attribute was evaluated. The bottom profile
in Figure 7 shows the lookup part of a multi-dimensional profile using the at-
tribute and node type dimensions (query “event name type”). In this table
the rows summarise a particular combination of the lookup attribute and node
type. For example, the first line summarises the cases where the lookup at-
tribute was evaluated at Use nodes. Since the tree in Figure 5 contains three
Dot nodes, it is comforting to see from the sixth line of the table that we looked
up names three times at such nodes.

3.6. Derived dimensions

As discussed in Sections 2.3 and 2.4 it is straightforward for the DSL devel-
oper or DSL user to add new dimensions that are derived from the ones that
are intrinsically part of profiling events. For example, when writing attribute
grammar code it is sometimes useful to be able to see where attributes are being
evaluated in the tree. Kiama provides a derived dimension called “location” to
aid with this analysis. It summarises the location of the subject node of an
attribute evaluation within the tree as “Root”, “Inner” or “Leaf” depending on
which of these categories it falls into. The dimension implementation makes use
of node properties that are provided by Kiama such as the parent property used
in the name analysis attributes in Section 3.2. A typical use case might involve
a query such as “name cached location” to see where in the tree attribute caches
are being used.

A more complex derived dimension is one that summarises the dynamic
dependencies between attribute occurrences. Kiama’s depends-on derived di-
mension aggregates attribute evaluations according to the attributes on which
they directly depend. It can be used to check that the pattern of attribution
that is being performed is as desired. The depends-on dimension is implemented
in twelve lines of code. A related dependencies dimension considers all transi-
tive dependencies and generates visualisations for display by GraphViz. The
implementation of this dimension is more complex and requires around seventy
lines.

Since derived dimensions are implemented by arbitrary code their processing
can be arbitrarily complex. There is no real limit on the extent to which derived
dimensions can be tailored to support profiling within a particular domain. In
particular, they can be used by a DSL user to extend the basic facilities of the
profiler provided by the DSL implementer. Of particular interest are problem-
specific extensions that enable the DSL user to construct custom profiles that
suit exactly what they are trying to achieve in their program.

3.7. More complex analysis via attribute profiling

PicoJava name analysis uses plain attributes and parameterised ones. Our
profiling approach extends to circular attributes where the evaluation is iterated
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until a fixed point is reached.
As well as looking at single attributes, we can also use profiles to compare

different designs for a collection of attributes. For example, the PicoJava name
analyser uses parameterised attributes to search for the declaration information
to bring it to the uses where it is needed. An alternative approach to name
analysis attribution is to propagate an environment value around the tree which
collects declaration information as it goes. When the environment reaches a use
of an identifier, it can be accessed directly to check that use.

Kiama supports this form of attribution via a chain, which is inspired by a
similar construct in the LIGA attribute grammar system [31]. A chain abstracts
a pattern of attribution that threads a value in a depth-first left-to-right fashion
throughout a tree. The idea is that the system provides the default threading
behaviour and the attribute grammar writer can customise the equations at var-
ious places in the tree to update the chain value. Kiama chains are implemented
by a pair of attributes: one to calculate the value of the chain that comes in to
a node from its parent, and one to calculate the value that goes back out of the
sub-tree to the parent. The developer can provide functions to transform the
incoming value as it heads into a sub-tree or as it leaves the sub-tree.

We can use profiling to compare these two general approaches to attribute
evaluation for name analysis. The conclusions will depend on the exact patterns
of identifier use that are present in typical programs. Generating profiles for
different test cases will reveal the overall cost of each approach and enable us to
compare the individual evaluations that make up either propagation or lookup.

4. Profiling Term Rewriting

We now consider the use of dsprofile for a second domain: strategic term
rewriting. We show that the scheme described in Section 2 provides information
that helps us to understand the dynamic behaviour of rewrites, just as it did
for the attribute grammar domain.

4.1. Obfuscating PicoJava programs

Suppose that we want to obfuscate PicoJava programs by renaming variables
and classes. Each declared variable and class should be allocated a unique
number. Uses of variable and class identifiers should be replaced by the letter
"n" followed by the number of the entity to which the identifier is bound. Pre-
defined identifiers such as int should not be renamed. We assume that all
identifiers refer to a declared entity since this transformation would normally
be run on legal programs. Figure 8 shows an example where the program on
the left is transformed into the obfuscated form on the right.

In general, the same identifier can be used in a program to refer to more
than one entity. Therefore, this program transformation requires name analysis
information to ensure that each identifier is replaced by the new name of the
correct entity. For example, in the program on the left of Figure 8 there are two
avar variables. The transformation needs to take into account that these are
different variables, in this case resulting in the names n1 and n7, respectively.
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{ {

class ALongClassName { class n0 {

int avar; int n1;

int bvar; int n2;

class NestedClass { class n3 {

int item; int n4;

avar = item; n1 = n4;

} }

NestedClass object; n3 n5;

object.item = bvar; n5.n4 = n2;

} }

class AnotherClassName { class n6 {

int avar; int n7;

ALongClassName object; n0 n8;

avar = object.bvar; n7 = n8.n2;

} }

} }

Figure 8: A PicoJava program (left) and its obfuscated form (right).

4.2. The obfuscation transformation

Declarations and uses may be mixed arbitrarily in a PicoJava program. It is
not necessarily the case that a declaration of an identifier occurs textually before
a use of that identifier. Therefore, the obfuscation transformation consists of
the following two steps:

1. Visit every variable and class declaration node. Allocate a unique new
name for the declaration. Store the relationship between the declaration
node and the new name in a map. Replace the declaration with a decla-
ration of the same entity but with the new name.

2. Visit every identifier use node. If the use is of a pre-defined identifier,
leave it alone. Otherwise, replace the use with a use of the new name of
the entity to which this use is bound.

Step 2 requires us to be able to work out which identifier is bound to a
particular identifier use. Recall from Section 3.2 that the PicoJava name analysis
specification defines a decl attribute of identifier uses that is a reference to the
relevant declaration node. Thus, in Step 2 we can search the map created in
Step 1 for that declaration node to obtain the new name.

4.3. Implementing the transformation

We implement the transformation using Kiama’s version of strategic term
rewriting [4, 24]. First, consider the processing of a declaration node in Step 1
of the transformation.
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val obfuscateDecl =

rule {

case d : VarDecl => d.copy (Name = makeName (d))

case d : ClassDecl => d.copy (Name = makeName (d))

}

obfuscateDecl is a rewrite rule that succeeds only at VarDecl or ClassDecl
nodes. At those nodes, it uses the helper method makeName to allocate a new
unique name for the declared entity. makeName manages a map called declNames

from declaration nodes to names. (We omit the implementation of makeName

since it is straightforward.) The copy method of the AST node is then used to
create a replacement node that is exactly the same as the old one but with the
new name.3 Finally, the rewrite rule succeeds with (returns) the new node which
has the effect of replacing the old node with the new node in the transformed
tree.

obfuscateDecl deals with single declaration nodes and will fail at other
nodes. To process all declaration nodes we need a way to traverse the whole
tree to find the declarations. We use the generic topdown higher-order strategy
that is provided by Kiama. topdown applies its argument strategy at all nodes
in the tree, from the root downwards and in a left-to-right fashion, failing if its
argument strategy fails. In the simplest version of this transformation, we apply
obfuscateDecl at all nodes in the tree and swallow failure. The attempt higher-
order strategy always succeeds, whether or not its argument succeeds. Thus,
we can implement Step 1 of the transformation with the following rewriting
strategy.

val obfuscateDecls = topdown (attempt (obfuscateDecl))

A similar approach suffices to implement Step 2. We divide the basic task
into handling pre-defined uses and replacing non-pre-defined uses. We assume
that the list predefinedNames contains the names that we do not want to
replace. preservePredefinedUse succeeds at uses of pre-defined names and
leaves them unchanged.

val preservePredefinedUse =

rule {

case u @ Use (name) if predefinedNames contains name =>

u

}

obfuscateNormalUse succeeds at all uses. It uses the decl attribute to find
the declaration of the entity to which the use refers, and looks it up in the

3The expression d.copy (Name = e) calls the copy method of d passing e as the value of
the named parameter Name. In this case the parameter specifies the value of the Name field of
the new node (see Figure 6).
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declNames map created by Step 1.4 It then succeeds with a new node that is
the same as the old node but uses the new name.

val obfuscateNormalUse =

rule {

case u : Use =>

u.copy (Name = declNames.getOrElse (u->decl, "$UNDEF$"))

}

We only want to apply obfuscateNormalUse if the check for a pre-defined
use does not pass, so we combine the two rules using the left choice operator <+
that only applies its right argument if its left argument fails. As in Step 1, the
simplest implementation is to apply the rules to every node in the tree, which
results in the obfuscateUses strategy.

val obfuscateUses =

topdown (attempt (preservePredefinedUse <+

obfuscateNormalUse))

Finally, we construct the complete transformation by combining the im-
plementations of Step 1 and 2 using the sequence operator <* to obtain the
obfuscateProgram strategy.

val obfuscateProgram = obfuscateDecls <* obfuscateUses

4.4. Understanding PicoJava obfuscation

The obfuscation transformation is not a complex one, but its exact operation
can be hard to comprehend. For example, how many times and at exactly
which nodes are each of the rewrite rules applied? In general, we want to avoid
applying rules at nodes where they cannot possible succeed. The brute force
topdown (attempt (s)) style of traversal is probably overkill.

To check what actually happens we can use profiles similar to those we saw
earlier for attribute evaluations. In this case the events we are interested in
are strategy evaluations, which are represented by the event type StratEval in
our profiles. The intrinsic dimensions of these events are the strategy that is
applied, the subject term to which it is applied, and the result of the application
(see the bottom part of Figure 3.)

The top part of Figure 9 shows a profile for a strategy name query produced
while obfuscating the program on the left-hand side of Figure 8. (To save
space, we have omitted the descendants columns.) We see that the strategies
obfuscateProgram, obfuscateUses and obfuscateDecls are applied exactly
once as expected. Processing the uses is more expensive than processing the

4Scala’s getOrElse method for maps takes a key as its first parameter, looks the key up in
the map and returns the corresponding entry if one is found. If the key is not present in the
map the second parameter is returned.
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By name for StratEval:

Total Total Self Self Count Count

ms % ms % %

42 58.4 0 0.2 1 0.1 obfuscateProgram

42 58.3 12 16.9 150 13.4 result

41 56.8 10 14.5 150 13.4 all

22 30.7 0 0.1 1 0.1 obfuscateUses

19 27.6 0 0.1 1 0.1 obfuscateDecls

19 26.9 10 15.1 150 13.4 attempt

7 9.8 5 7.1 75 6.7 <+

1 2.3 1 2.2 71 6.3 obfuscateNormalUse

1 1.5 1 1.5 75 6.7 obfuscateDecl

0 0.6 0 0.6 127 11.3 id

0 0.4 0 0.4 75 6.7 preservePredefinedUse

By subject for StratEval and obfuscateNormalUse:

Total Total Self Self Count Count

ms % ms % %

0 0.9 0 0.9 2 0.2 Use(avar)

0 0.3 0 0.3 2 0.2 Use(item)

0 0.3 0 0.3 2 0.2 Use(object)

0 0.2 0 0.2 2 0.2 Use(bvar)

0 0.2 0 0.2 1 0.1 Use(ALongClassName)

0 0.2 0 0.2 1 0.1 Use(NestedClass)

...

Figure 9: Extracts of profiles produced when the PicoJava obfuscation transformation pro-
cesses the program on the left-hand side of Figure 8: “event name” for strategy evaluations
(top); “event name subject” for the obfuscateNormalUse strategy (bottom). (Descendants
columns omitted to save space.)

declarations in this run, which makes sense since there are twenty-three uses
but only nine declarations.

The tree has seventy-five nodes, so we see that the two full passes result
in twice that number of applications of the generic traversal all (which is
used in the implementation of topdown) and attempt. obfuscateDecl and
preservePredefinedUse are applied at each node, but obfuscateNormalUse

is not applied at four nodes. Presumably, the four nodes are the ones for the
uses of the int identifier. We can check this belief by querying on “event sub-
ject”. The beginning of a profile for this query is shown in the bottom part
of Figure 9. The profile shows that most of the activity occurs at the uses of
the non-predefined identifiers, but there is a long tail consisting of almost every
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node in the tree. The full profile is missing an entry for Use(int) so we can
confirm that those four nodes are not processed.

Given this information, we might seek to improve our transformation. For
example, the most glaring issue is that the rules are applied at every node
in the tree. Can we do better than that? At the very least we could avoid
trying to obfuscate normal uses of identifiers if the node is not a use at all.
The preservePredefinedUse strategy is already acting as a gate-keeper for
obfuscateNormalUse, but it lets non-Use nodes past. We can reduce the num-
ber of nodes that obfuscateNormalUse has to consider by reversing the sense
of the check that preservePredefinedUse does. Instead of succeeding on pre-
defined uses, we now succeed only if the subject term is a use that should not
be preserved. Non-Use nodes will not pass this version of the test. We must
also change obfuscateUses to use sequencing instead of left choice so that
obfuscateNormalUse only runs if the new preservePredefinedUse succeeds.
We now have these improved versions of the strategies.

val preservePredefinedUse =

rule {

case u @ Use (name) if ! (predefinedNames contains name) =>

u

}

val obfuscateUses =

topdown (attempt (preservePredefinedUse <*

obfuscateNormalUse))

With these changes the profile shows that obfuscateNormalUse only runs
at ten nodes, exactly those that are shown in the bottom part of Figure 9 and
excluding the long tail.

These kinds of optimisations can make a big difference when we are working
with complex transformations. Profiles of the kind shown here can focus our
attention on the strategies that are doing the most work and help us confirm
that our changes have made a positive difference.

4.5. Debugging with domain-specific profiles

The topdown-attempt style of traversal used in the obfuscation rewrites is
a common pattern, but it can be difficult to know when to use it. We now
show an example where a missing attempt is not obvious until we profile. This
example illustrates a common error in rewriting programs.

PicoJava allows classes to be nested inside one another. We would like to
define a code transformation that removes nested classes, making their contents
part of the enclosing class. We identify the class to remove by giving its name.

We define a rewrite rule that looks for class declarations in a list of block
statements. We only need to identify class declarations at the start of such a list
because recursive application of the strategy will be used to ensure that each
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sub-list is checked. In the case when we find such a declaration, we replace it
with its body by pre-pending the body to the rest of the current declarations.5

def removeClass (name: String) =

rule {

case (ClassDecl(‘name‘, _, Block (bs)) :: rest) =>

bs ++ rest

}

All that is left now is to ensure that this rewrite rule is applied over the
entire program. A common choice is to use the topdown generic traversal as
used in the obfuscation transformation. We assume in this definition that name
contains the name we wish to search for.

val removeClasses = topdown (removeClass (name))

However, this code fails, not making any changes at all when applied to the
program in Figure 5 if we ask it to remove classes named AA. This problem is
quickly confirmed by the extract from a profile shown in the top part Figure 10
which shows that removeClass has only been applied once.

0 0.3 0 0.2 0 0.2 1 0.4 topdown

0 0.2 0 0.2 0 0.0 1 0.4 removeClass

8 22.9 2 7.5 5 15.4 58 11.1 topdown

0 1.7 0 1.7 0 0.0 58 11.1 removeClass

0 1.4 0 1.4 0 0.0 57 10.9 id

Figure 10: Two extracts from profiles of the removeClasses strategy when applied to the
program in Figure 5. The top extract shows the erroneous situation when the recursive
applications are not being performed. The bottom extract shows the correct behaviour when
the rewrite is performed throughout the tree.

We expected that the use of the top-down strategy would have applied it to
all nodes, but it was applied just once. We have found an instance of a common
term rewriting error, unexpected failure, which has been identified by Lämmel
et al. as a common cause of bugs in rewriting programs [25]. removeClass

is a strategy that fails when not applicable and the topdown strategy stops at
failure. We require a version of removeClass which does nothing when not
applicable.

We can create a version of removeClass that leaves its input alone when not
applicable by wrapping it in the strategy attempt as we did in the obfuscation
example.

5Scala allows pattern matching on a specific named value by enclosing the name in back-
quotes as in ‘name‘. The :: operator is the list constructor taking a list element on the left
and a list on the right. List concatenation is performed by the ++ operator.
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val removeClasses = topdown (attempt (removeClass (name)))

The bottom part of Figure 10 confirms that the behaviour is more reasonable.
removeClass is now applied fifty-eight times, once for each node in the abstract
syntax tree. We can also learn from the rest of the profile, such as the number
of times that the identity strategy id was applied by attempt. In this case
the difference between the number of times that removeClass was applied and
the number of applications of id was one, so we can see that removeClass

succeeded exactly once. This is the expected result for this example since we
were removing a single class.

5. Discussion and Related Work

The vast majority of previous work in the profiling area has concentrated
on execution profiles for programs, inspired by systems such as the seminal
gprof tool [1]. A gprof-style profile shows the functions that were called by
the program and aggregates the execution time of each function according to
time used by that function itself and time used by the functions it called. The
profile also shows the actual pattern of control flow between functions so that
the behaviour of a function can be analysed in terms of how much time is spent
using other functions.

Our approach is a generalisation of the gprof approach. Instead of restrict-
ing our attention to constructs such as functions that appear in the source
code of a program, we allow attention to be brought to bear on any domain-
specific operation. Instead of summarising control flow in terms of calls between
functions, we allow arbitrary hierarchical dependencies between domain-specific
operations. Instead of listing the functions that were called, we allow the profile
to report on execution events in terms of domain-specific dimensions.

While the approach is similar, it is important to appreciate the major dif-
ferences. A gprof-style profile reports on execution in terms of the source code
form of the program. Our approach allows DSL developers to build profiling
support that reports using any events and dimensions that are appropriate for
their domain. DSL users can even extend the profiler by adding new derived
dimensions. There need not be a direct relationship between the code of a DSL
program and the events and dimensions. For example, in our attribute grammar
profiles there is nothing in a DSL program that talks about attribute caches,
yet it is part of the dynamic attribute grammar domain. Making the caching
behaviour part of the attribute evaluation events is natural since it is part of
the attribute grammar domain.

Furthermore, there need not be any simple relationship between the func-
tions (or methods) called by the DSL implementation and the events that it
generates. This observation precludes a simple alternative approach where the
output of a gprof-style profiler is mapped into domain-specific operations or a
compiled program is instrumented at run-time. Our instrumentation approach
is easy to use and extremely flexible since events can be generated from any-
where in the DSL implementation. (Our presentation has focused on DSLs that
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are embedded in a general-purpose language but a DSL implementation built
around translation or interpretation could use a very similar approach.) The
price we pay is that the DSL implementation must be modified, but since the
developer of the profiling facility is very likely to be the DSL developer, we do
not think this limitation is a major one.

5.1. Value profiling

Value profiling has been investigated for applications in low-level compiler
optimisation [32]. The context of value profiling is quite different to our work,
since the profiles are obtained by instrumenting load instructions and memory
locations. The basic result is similar, though, since in both cases we show that
examining the values that are actually used in a program can reveal information
that aids in understanding how that program runs.

5.2. Abstraction in profiling systems

Instead of profiling at the function level, our approach raises the level of
abstraction. Abstraction increases the generality of the profiling system and
significantly reduces the size of the collected data compared to instruction and
function-level profilers.

Sansom and Peyton Jones describe a profiler for higher-order functional lan-
guages including Haskell [33]. The execution of higher-order programs, partic-
ularly lazy ones, is not obvious since the compilation process is non-trivial and
execution order often does not correspond clearly to the source code. They al-
low developers to add “cost centres” that aggregate data in a program-specific
manner. Thus, the source-level profile data can be lifted to a higher level. In our
case, the data is always at a higher level. Their cost centres are each associated
with source code fragments rather than separated into Start and Finish events
as in our approach. Thus, the identification of an abstracted piece of program
execution is more flexible in our approach because the two events do not have
to be associated with the same source code.

Nguyen et al. describe a domain-specific language for automating the reg-
ulation of profile data collection, processing and feedback [34]. The language
allows some abstraction away from the details of the profile exploration process.
However, it is different from our work in that it operates at a low level and is
intended for analysing performance of programs and system kernels in a similar
fashion to gprof.

Rajagopalan et al. consider profiling for event-based programs such as graph-
ical user interfaces [35]. Events in their work are intrinsic to the functioning
of the system, whereas in our work they are solely part of the profiling sys-
tem. They look for patterns in the events which allows them to abstract away
from the execution somewhat, but they do not consider a general abstraction
mechanism.

The DTrace tracing framework provides powerful facilities for inserting probes
to collect data about programs as they run [36]. Systems such as the Linux Trace
Toolkit [37] and the Java Virtual Machine Tool Interface can also be used to
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collect a large amount of trace data about program execution. These mecha-
nisms enable profiling data to be collected, but they operate at a much lower
level than the DSL level that we operate at in our approach.

For example, to build an attribute evaluation profiler for Kiama programs
using DTrace we would have to insert probes at the Java Virtual Machine (JVM)
level and write code in DTrace’s D language to assemble the data obtained from
these probes into DSL-level information such as the hierarchy of attribute evalu-
ations, attribute names, etc. Just the task of inserting the probes appropriately
would require very specific knowledge of how the Kiama Scala code has been
translated down to JVM byte code. Thus, the task of adding profile support to
a DSL implementation would be much harder than in our approach, which does
not require the developer of the DSL to do anything more than insert a small
number of method calls in their DSL implementation. Moreover, DTrace and
similar tools require a lot of infrastructure support from the system on which
they run, so they are a much more heavyweight profiling solution than our ap-
proach. Our dsprofile library is small and easy to understand and could easily
be implemented on non-JVM platforms. This lightweight nature suggests that
the approach is more appropriate for situations where DSLs are being developed
and deployed rapidly.

Bergel et al. describe a model-based domain-specific profiling approach [38].
Instrumentation code augments domain model code via an existing event mech-
anism or by using the host language’s reflection framework. Custom profilers
use the information gathered to display profiles and visualisations that relate
directly to domain data and operations. The reliance on meta-programming
features of the framework distinguishes their approach from ours. We pay the
price of having to instrument the DSL implementation by hand, but as a re-
sult we make no demands on the underlying runtime. The dsprofile library is
independent of any particular domain and the reports have a generic format,
whereas their profilers are deliberately tailored to particular model code and
particular kinds of observations that they want to make.

5.3. Profiling attribute grammars

Saraiva and colleagues have investigated the efficiency of attribute grammar
evaluation approaches, notably as part of work to improve the efficiency of
evaluators that are constructed as circular programs [39]. Their experiments
focused on course-grained measures such as heap usage, rather than the kind of
fine-grained analysis considered in this paper. In earlier work, Saraiva compared
the performance of functional attribute evaluators [40]. He examined properties
such as hash table size, cache misses and the number of equality tests performed
between terms for both full and incremental evaluation of attributes. Some of
these measures have analogues in our approach. The implementation appears
to be custom to the particular experiment rather than a general facility as in
our library.

Söderberg and Hedin show how attribute profiles can be used to analyse
caching behaviour in JastAdd [41]. They calculate an attribute instance graph
that is an attribute dependence graph with evaluation counts on the edges.
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Edges labelled with counts greater than one point to attributes for which caching
might be advantageous. Their attribute dependence graph is similar to our col-
lection of profile records and dependency relationships, except that our records
are independent of the attribute evaluation domain. Our use of arbitrary di-
mensions to extend the power of profiles goes beyond the aim of Söderberg and
Hedin’s work which was to look solely at caching issues.

In earlier work, the first author developed the Noosa execution monitoring
system for the Eli system, including the attribute grammar component [42].
Noosa is a debugging system, not a profiler, but it also uses an event-based
approach to record information about the execution of a program. Noosa doesn’t
group events in the same way as the Kiama profiler, since it uses events primarily
to specify domain-specific breakpoints. The focus is on controlling the execution
as it happens rather than on summarising it after it is done. Noosa can be used
to examine the values of attributes of interest with reference to the abstract
syntax tree, but it cannot be used to summarise the execution along other
dimensions.

5.4. Profiling rewriting systems

Some rewriting systems have very sophisticated profiling systems, but none
are generic enough to encompass other facets of computation (like attribute
grammars) as ours does. Stratego has the ability to print tracing information
as a program is executed [43], but this information can’t be interrogated in
different ways and requires many program annotations. Maude has an extensive
profiling system built specifically to capture rewriting information [44] from
which we plan to take inspiration as we extend the profiling capabilities of
Kiama. However, profiling in Maude is restricted to term rewriting and there is
no way to profile attributes or other hierarchical computation. Other rewriting
systems rely on the capabilities of the underlying implementation language and
thereby expose some implementation details to the programmer. For example,
the Tom system [45] is a moderate extension of Java so profilers for that language
can be used to examine the behaviour of Tom programs.

Van den Brand et al [46] show how to create a debugger that will work
not just for rewriting, but for systems built with rewriting. The TIDE system
they created allows you to create breakpoints and to see the source code during
debugging. Our work focusses on profiling as opposed to debugging, including
execution time; plus our work allows post-facto analysis of the collected data.

Like our profiler, all of the above analyses are dynamic. Lämmel et al.
[25, 26] have catalogued many kinds of errors that occur in programs using
strategic rewriting and have developed static analyses to discover errors via the
type system and to guide repair efforts. Our work is complementary to static
analysis. Ultimately, we imagine a system where static analysis finds the errors
it can and the remaining are left to dynamic analysis tools. As we have shown
in Section 4 our profiles can already be used to help diagnose some rewriting
problems of the kind identified by Lämmel et al.
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6. Conclusion and Future Work

We have described a new general approach to domain-specific profiling and
its application to profiling software language implementations that are based
on dynamically-scheduled attribute grammar evaluators and strategic rewriting
systems. The approach is easy to implement and its execution overhead is low
enough for interactive use. We have described applications of the profiler to
program understanding, testing and debugging.

One direction for future work is to deploy the profiler with other attribute
grammar systems. The approach used with Kiama should easily transfer to
other systems based on dynamic scheduling, but minor modifications should
allow it to be used with other evaluation approaches. For example, a statically-
scheduled tree walking attribute evaluator could be instrumented automatically
by the scheduler. There might be scope to add new dimensions, such as one
that captures information about node visits across different attributes.

On the rewriting side, we think that is worthwhile to explore the behaviour
of rewrite strategies at both higher and lower levels we have considered in this
paper. At a higher level it should be possible to report on general traversal
patterns by combining information from multiple events. At a lower level it
will be useful to consider strategy failure in more detail. Strategies can fail
when the subject term does not match any of the applicable patterns. Higher-
order strategies can fail due to the operation of one of their argument strategies.
Failure is a primary concern in strategic rewriting because it drives choices in
the execution path, particularly during generic traversals. The profiling support
currently implemented in Kiama captures failure of a strategy application via its
result intrinsic dimension but we have not explored its use for non-local failure
analysis.

The execution model we use is not tied to attribute grammars or rewriting
systems, so we expect it to be useful for profiling code that is based around
other abstractions. For example, we could imagine generating events as a parser
executes so that dynamic behaviour such as back-tracking could be examined.
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