
Oberon-0 in Kiama

Anthony M. Sloanea,∗, Matthew Robertsa

aDepartment of Computing, Macquarie University, Sydney, Australia

Abstract

The Kiama language processing library is a collection of domain-specific lan-
guages for software language processing embedded in the Scala programming
language. The standard Scala parsing library is augmented by Kiama’s facilities
for defining attribute grammars, strategy-based rewriting rules and combinator-
based pretty-printing. We describe how we used Kiama to implement an Oberon-
0 compiler as part of the 2011 LDTA Tool Challenge. In addition, we explain
how Scala enabled a modular approach to the challenge. Traits were used to
define components that addressed the processing tasks for each Oberon-0 sub-
language. Combining the traits as mixins yielded the challenge artefacts. We
conclude by reflecting on the strengths and weaknesses of Kiama that were
revealed by the challenge and point to some future directions.

Keywords: Oberon-0, attribute grammars, term rewriting, Kiama, Scala,
traits, mixins

1. Introduction

Kiama is a collection of domain-specific languages (DSLs) for software lan-
guage processing [1]. Each DSL is simple and has a small implementation as
a library for the Scala general-purpose language. Program representations are
Scala data structures and Kiama-based code can be compiled and executed by
the standard Scala implementation [2] and edited by standard Scala develop-
ment environments. DSL-based code is augmented by normal Scala code where
necessary. The result is a very lightweight approach to language processing that
integrates easily with other code and libraries.

This paper describes how we used our Kiama language processing library to
implement an Oberon-0 [3] compiler as part of the 2011 LDTA Tool Challenge.
It can serve as a general introduction to Kiama but omits features that are not
directly relevant to the challenge tasks.

∗Corresponding author
Email addresses: Anthony.Sloane@mq.edu.au (Anthony M. Sloane),

Preprint submitted to Elsevier October 9, 2015

We distinguish between the following kinds of processing component which
are used in the Oberon-0 implementation:

• Syntax analysers that read program text and build abstract syntax trees
(Section 2). We use combinators from the standard Scala library to write
syntax analysers [2, chapter 33].

• Semantic analysers that decorate trees with information and check the
conformance of that information to language rules (Sections 3 and 4).
The decorations take the form of attributes associated with tree nodes.
Kiama’s attribute grammar DSL provides a notation for expressing at-
tribute equations [4].

• Transformers that restructure trees while staying within a single syntax
(Section 5). We write transformers using Kiama’s strategic term rewriting
DSL which is based on the Stratego language [1, 5, 6].

• Translators that convert a tree conforming to one syntax into a tree con-
forming to another syntax (Section 6). We write translators using normal
mutually-recursive Scala functions.

• Pretty printers that convert trees into text (Section 6). We write rules that
govern pretty printing using a Kiama version of a Haskell-based pretty-
printing DSL [7].

Section 7 describes the overall structure of the Kiama Oberon-0 implemen-
tation, including how the components relate to each other and how they are
combined to make the challenge artefacts. Each component of the Oberon-0
implementation is a separate Scala trait. We use the mixin facilities of Scala
to assemble components into language implementations [2, chapter 12]. These
modularity features of Scala are orthogonal to the processing facilities provided
by the Kiama library which do not need to address modularity at all.

Section 8 steps back from the details to reflect on the end product and what
it has to say about the strengths and weaknesses of the Kiama approach.

In some cases the presented code has been slightly simplified from the actual
code to make presentation simpler. For example, where the compiler uses lazy
values to avoid issues with initialisation order, we use plain values here since
initialisation is a minor issue that is irrelevant to the main topic of the paper.

The complete code of the Oberon-0 implementation can be found in the
Kiama distribution. Documentation, source code and installation instructions
for Kiama can be obtained from https://bitbucket.org/inkytonik/kiama.
This paper is based on version 1.6 of Kiama which was the current version at
the time of the challenge. Some time has passed since that version, so to make
the paper of most use to current readers we briefly mention improvements in
later versions of Kiama which are relevant to the challenge tasks.

2

2. Trees and Syntax Analysis

The abstract syntax trees built by Kiama syntax analysers are typically
defined using a standard object-oriented approach. Each non-terminal of the
grammar is an abstract class with concrete sub-classes for each variant of that
non-terminal. The concrete classes in the tree definition are defined using Scala
case classes [2, chapter 15]. Case classes are normal classes, but also share some
properties with algebraic data types in functional languages. For example, in-
stances can be created without the new keyword, their fields are immutable by
default, field values can be extracted using pattern matching, and they imple-
ment field-based equality. We will see examples of using case classes when we
discuss the tree processing phases in subsequent sections. For now, here is the
fragment of the tree definition that defines assignment statements and some
forms of expression.

abstract class Statement extends SourceTree

case class Assignment (desig : Expression, exp : Expression)

extends Statement

abstract class Expression extends SourceTree

case class IntExp (v : Int) extends Expression

case class AddExp (left : Expression, right : Expression)

extends Expression

SourceTree is the base class of all nodes in the Oberon-0 source tree. It’s sole
purpose is to enable Kiama’s Attributable trait to be mixed in to each tree
class. Attributable must be present to enable the generic access features of
Kiama’s attribution library which we will use in Section 3 and Section 4. The
requirement to mix in Attributable has been removed in Kiama version 2 as
described in our paper on smoothly combining attribution and term rewrit-
ing [8].

The versions of the Oberon-0 compiler that output C code first construct a
tree to represent that code. We use the term source tree to refer to the tree of
the Oberon-0 program and target tree to refer to the tree of the C program. The
principles for defining and building target trees are the same as for the source
tree, except that target trees are produced by translators instead of by syntax
analysers (Section 6).

Syntax analysers are written using the standard Scala packrat parsing library
combinators [2, chapter 33]. Complex parsers can be constructed from basic
ones in a style that mimics context-free grammar productions. For example,
the following parser for assignment statements shows a typical use of the main
combinators.

val assignment = (lhs ~ (":=" ~> expression)) ^^ Assignment

3

lhs and expression are parsers defined elsewhere. A literal string is converted
implicitly into a parser that just accepts that string. The tilde operator ~

sequences two parsers to make a parser that returns a pair of the values returned
by its operand parsers. The ~> operator also sequences, but throws away the
value of its left operand. The ^^ operator transforms the result of a parser using
an arbitrary function. In the example the Assignment tree node constructor
is used to build a tree node from the children nodes that are built by the
lhs and expression parsers. Kiama provides implicit conversions to enable a
constructor to be used directly like this. In plain Scala parser combinator code
it would be necessary to match on the result of the parse and pass those results
explicitly to the constructor.

The actual formalism supported by Scala’s parsing library is parsing expres-
sion grammars [9]. The main difference from context-free grammars is that the
choice (alternation) operator is ordered which means that productions are un-
ambiguous. As a result, it is necessary to order alternatives so that less-specific
alternatives come later than more specific ones, otherwise the latter would never
be chosen. For example, in the following simplified excerpt from the expression
grammar the factor alternative must come after the operator alternatives be-
cause a factor will begin the input matched by the alternatives.

val term : PackratParser[Expression] =

term ~ ("*" ~> factor) ^^ MulExp |

term ~ ("DIV" ~> factor) ^^ DivExp |

factor

The term parser is required by Scala to have an explicit type since it is recursive.
There is no separate scanning phase. Parsers for lexical symbols are con-

structed directly from regular expressions. For example, an identifier is parsed
by first rejecting keywords and then accepting suitable strings of characters.

val ident = not (keyword) ~> "[a-zA-Z][a-zA-Z0-9]*".r

(The r method of a string converts it to a regular expression.) Rejection of
keywords is performed using the not combinator which fails if its argument
parser succeeds. The keyword parser is defined to accept a keyword only if it
does not occur as the prefix of an identifier.

White space is skipped by the library parsers before literals and before input
that matches regular expressions. The Scala library supports the definition of
white space using a regular expression. Oberon-0 white space includes comments
that can nest, so standard regular expressions are not sufficient. Rather than
define an awkward non-standard regular expression for nested comments, we
use a Kiama extension of the Scala library that allows white space to be defined
by a parser. Therefore, we define Oberon-0 white space as follows.

Matthew.Roberts@mq.edu.au (Matthew Roberts)

4

val whitespaceParser = rep (whiteSpace | comment)

val comment = "(*" ~ rep (not ("*)") ~ (comment | any)) ~ "*)"

whiteSpace is the default white space regular expression. The any parser ac-
cepts any character. A parser built by rep matches zero or more repetitions of
its argument parser.

3. Name analysis

After syntax analysis, the compiler performs semantic analysis on the source
tree to check whether the program conforms to the language rules. Semantic
analysis is implemented using Kiama’s attribute grammar DSL [4]. Each piece
of information needed for the analysis is represented by the value of an attribute
that is associated with the most relevant node in the tree. For example, a type
will be computed for each expression and a representation of that type will
be associated with the node that represents the expression. Kiama attribute
values are stored outside the tree so the definition of the tree does not have to
be changed if attributes are added or removed.

The interface to an analysis component is a single errors attribute that
collects messages that result from that analysis. If there are no errors, the
compiler driver passes the source tree to the transformation and code generation
phases. If there are errors, they are reported and the compiler exits. Source text
positions for error messages are obtained from a map between source tree nodes
and positions. This map is automatically created by a small Kiama-provided
adaptation of the Scala parsing library.

Attribution of a tree requires a traversal to visit the relevant nodes in the cor-
rect order, equations that specify how to calculate attribute values, and storage
for the calculated values. Kiama uses a demand-driven evaluation approach so
that attribute values are only calculated if they are needed. Attribute equations
define the data dependencies between attribute occurrences and hence implic-
itly define the traversal order. Calculated values are cached so that they do not
need to be re-calculated if they are demanded again. Overall, this evaluation
approach means that an analysis developer can focus on the data dependencies;
tree traversal and attribute storage are taken care of by the library.

Name analysis in the Oberon-0 compiler is implemented using a set of at-
tributes that compute properties of the declarations and uses of identifiers in the
source program. An environment is computed for each tree node that contains
exactly those bindings that are visible to that node according to the scoping
rules of Oberon-0. The environment is threaded through the tree using a chain
of attributes that is modelled after similar constructs in dedicated attribute
grammar languages [10]. An attribute chain encapsulates a pattern of attribu-
tion that reaches each node from its parent, visits each of its children recursively
from left to right, then leaves the node to the parent. At each point along the
way the value of the chain can just be passed along or a new value can be
computed, usually based on the value of the chain coming into that point.

5

Kiama provides support for defining chains where the default threading be-
haviour is provided but can be overridden by defining partial functions that
match on tree nodes. For example, the environment attribute env is defined as
follows:

val env : Chain[SourceTree,Environment] =

chain (envin, envout)

The functions envin and envout define custom behaviour on entry to and exit
from the sub-tree at a node, respectively. These functions are partial; if they
are not defined at a particular node then the value of the chain is passed on
unchanged.

envin and envout cooperate to adjust the environment so that at any given
node it is an accurate representation of the bindings that are in scope at that
node. For example, the environment chain is defined by envin to start at the
root of the tree (a module declaration) with a default environment defenv and
to enter a new nested scope for the module. That processing is implemented by
the first case of envin.

def envin (in : SourceTree => Environment) = {

case _ : ModuleDecl => enter (defenv)

case b : Block => enter (in (b))

...

}

envin is defined using Scala’s partial function literal syntax which uses pattern
matching cases within a brace-delimited block. The second case of envin ensures
that at each block node we enter a nested scope for that block. The outer block
is obtained by applying the in function which gives access to the default value of
the chain. Analogously, envout leaves nested environments as the chain passes
module declaration and block nodes on the way out of a sub-tree.

def envout (out : SourceTree => Environment) = {

case m : ModuleDecl => leave (out (m))

case b : Block => leave (out (b))

case n @ IdnDef (i) => define (out (n), i, n->entity)

...

}

The third case of envout carries out the heart of the environment calculation
at identifier definition nodes by adding the identifier and its entity (described
below) to the topmost scope of the current environment. Operations on envi-
ronments are provided by a Kiama module, including enter, leave and define

used here, plus isDefinedInScope and lookup which are used below in the
definition of entity.

At any node in the tree the environment chain can be accessed to obtain the
visible bindings for that location in the program. In particular, we use the chain
to compute the program entity that is represented by each identifier occurrence.

6

Entities can contain properties directly or have fields that refer to tree nodes
from which properties can be derived. For example, a constant entity holds a
reference to the constant declaration node from which the expression defining
the constant can be obtained. The following code defines the entity attribute.

val entity : Identifier => Entity =

attr {

case n @ IdnDef (i) =>

if (isDefinedInScope (n->(env.in), i))

MultipleEntity ()

else

entityFromDecl (n, i)

case n @ IdnUse (i) =>

lookup (n->(env.in), i, UnknownEntity ())

}

This attribute is typical of equations that match on the node at which the
attribute is being calculated. The Kiama attr function takes a single argument
that is a partial function defined by cases and wraps it with the demand-driven
evaluation mechanism of attributes. The “brace and case” syntax of Scala’s
partial function literals makes an attr application look like a built-in construct
when it is just a call to a Kiama method. Attribute occurrences are accessed
in the definition of entity using the -> infix operator, but they can also be
accessed in a functional style. In these equations, env.in is an attribute that is
the value of the environment chain as it enters a node. In each case, the name n

is bound to the matched node via the n @ notation preceding the pattern. The
expression n->(env.in) obtains the value of that attribute at node n, as would
env.in(n).

In the entity attribute definition we associate a representation of a program
entity with each identifier occurrence. At every node that represents the dec-
laration of an identifier (IdnDef), we check using isDefinedInScope to see if
the identifier is already present in the topmost scope of the environment. If this
is the case, the identifier has been defined more than once in that scope so we
represent it by a special MultipleEntity. If the identifier is new in the current
scope, we calculate an entity for it using the entityFromDecl method. Back in
entity, at every node that represents a use of an identifier (IdnUse), the envi-
ronment is searched using lookup to try to find a binding for the identifier. If
a binding cannot be found we represent its entity by a special UnknownEntity.

The entity attribute is defined by two cases: one for defining occurrences
of identifiers (IdnDef nodes) and one for uses (IdnUse nodes). We are relying
here on defining occurrences and uses being syntactically distinguished. An
alternative is to use a single node type for all identifier occurrences and use some
other mechanism to examine the context of those occurrences to tell defining
occurrences from uses. This alternative approach would certainly be possible
using Kiama but we used the syntactic approach since it is possible for Oberon-0
and keeps the definition of entity simple.

7

Entities form the basis of name analysis checking. Most semantic checks
are simple conditions on attributes. For example, name analysis for the L1
language checks that no identifier is multiply-defined and that each use has an
associated declaration. These checks are implemented by the following code in
the errorsDef method. n is the node that is being checked.

n match {

case d @ IdnDef (i) if d->entity == MultipleEntity () =>

message (d, s"$i is already declared")

case u @ IdnUse (i) if u->entity == UnknownEntity () =>

message (u, s"$i is not declared")

...

}

The message method returns a message at the source text location of the tree
node that is passed as its first argument.

Finally, all of the errors for the tree are collected to compute the errors

attribute for a tree. The implementation of errors uses Kiama’s strategic
programming facility to generically traverse the tree so that all nodes will be
checked.

val errors =

attr (collectall {

case n : SourceTree =>

errorsDef (n)

})

collectall visits every node in the tree and accumulates the values produced
by its function argument. In this case we just call errorsDef at each node and
accumulate the messages that it returns. The SourceTree type annotation is
necessary to restrict the type for the errorsDef call since collectall assumes
all nodes are of the Scala root type Any.

This error collection scheme is designed to be extensible. We do not antici-
pate the conditions that might be checked or the errors that might be generated,
since errorsDef is free to do what it likes. Since the check for errors reaches
every node, there is no limit on future extensions. An extension can override
errorsDef to provide new cases and call the overridden version to retain errors
from the extended language. More discussion on our approach to extensibility
can be found in Section 7.

Name analysis at one level extends easily to other language levels. If no
new declaration or scoping constructs are added, no changes need to be made.
The environment chain will simply traverse into the new constructs and the
existing checks will be performed. New declarations and scoping constructs can
be accommodated by overriding the definitions of the entityFromDecl method
and the environment chain. The overridden method is called to access processing
for old constructs. For example, in the L3 name analyser the chain is adjusted to
take account of procedure scopes. New kinds of entities are added to represent

8

procedures and parameters. All environment processing, the entities and the
checks from earlier levels are reused by the L3 analyser without change. (See
Section 7 for more details on how the components are combined in a modular
way.)

4. Type checking

The type analysis components of the Oberon-0 compiler are defined in a
similar way to the name analysis components. Each expression has a tipe1

attribute that calculates its type from its contents, and an exptype attribute
that calculates the type expected by the context.

For example, removing irrelevant details, the tipe attribute in the L1 type
analyser matches the following cases to an expression node n to assign types to
relational, logical, arithmetic and identifier use expressions:

n match {

case _ : EqExp | ... | _ : OrExp | ... =>

booleanType

case _ : AddExp | _ : MulExp | ... =>

integerType

case IdnExp (u) =>

u->idntype

...

}

The first two cases perform type tests on the tree nodes and choose a Boolean
or integer type as appropriate. The third cases uses the idntype attribute
which accesses the entity of an identifier use (as determined by name analysis)
to determine its type from its declaration.

The expected type of an expression is calculated by pattern matching on the
expression’s parent node since it defines the context. Each node is equipped
with a parent reference by virtue of its class inheriting from Attributable as
discussed in Section 2. The parent references are set by a pass over the tree be-
fore attribution begins. (As noted earlier, Kiama 2 removes Attributable and
provides a safer mechanism for matching on the relationships between nodes [8].)
For example, if the parent of an expression node n is an OR, AND or NOT node
then the expected type of n is Boolean. The expected type of the right-hand
side of an assignment is the type of the left-hand side. These computations are
implemented by the following cases in the definition of the exptype attribute:

n.parent match {

case _ : OrExp | _ : AndExp | _ : NotExp =>

booleanType

case Assignment (d, _) =>

1type is a reserved word in Scala.

9

d->tipe

...

}

The parent reference provides a convenient way to access the context of a
node and to define contextual attributes such as the expected type. Since our
tree structures are defined by collections of Scala case classes there is no static
way to ensure that the parent of a node is of a particular type, as would be
possible with a proper grammar analysis. For this reason the type of the parent
reference is just the base type of all tree nodes. Hence, the use of parent opens
an aspect of dynamic typing in the compiler implementation and we rely on
testing to confirm appropriate behaviour.

The L1 type analyser checks one simple condition: that the type of an expres-
sion is compatible with its expected type. The exact definition of compatibility
is provided by the isCompatible method. The definition of this method is
overridden in other language levels as the notion of compatibility changes. The
check itself is left unchanged.

The type analyser cooperates with the name analyser to avoid reporting
spurious errors. For example, a name that is assigned an UnknownEntity results
in a name analysis error. It is useless to also report type analysis errors in
expressions that use such a name. The type analyser assigns an “unknown” type
to identifier use expressions that have unknown entities. The isCompatible

method regards unknown types to be compatible with any other type.

5. Source-to-source transformation

In the Oberon-0 compiler the following source-to-source transformations are
performed:

1. Make user-level names unique to assist other transformations such as lift-
ing. This transformation is placed at L1 since it only depends on the
constructs that represent defining and applied occurrences of identifiers.

2. Replace L2 FOR and CASE statements with their L1 equivalents as required
by T4.

3. Lift nested declarations to the top-level as required by T4 and T5. Al-
though the challenge required this only for L3 to handle nested procedures,
we place it at L2 since it works for any declaration, not just declarations
of procedures. It is also used in our compiler to lift declarations out of
nested blocks that are created by the FOR and CASE transformation. We
discuss the further in the following.

We now discuss the desugaring of L2 FOR and CASE statements in more detail
to illustrate how a source-to-source transformation is achieved. Semantic anal-
ysis of these constructs is performed as described in the previous two sections.
Between analysis and code generation, we desugar these constructs into equiva-
lent simpler constructs. FOR statements are transformed into WHILE statements.
CASE statements are transformed into cascades of IF statements.

10

In this compiler, a transformation component implements a single method
that takes the root of a source tree and returns a possibly transformed source
tree. As for the analysis phases, the transformer for one language level calls
the transformer for the next lower level, so the transformations are composed
without requiring any knowledge of each other. Transformations stay within
the source language, in contrast to translation components that turn a source
tree into a target tree, thereby changing languages (Section 6).

Transformations are implemented using Kiama’s strategy-based term rewrit-
ing library. Here we are using strategies in a type-preserving fashion (i.e.,
within a single syntax) and Kiama uses Scala’s static type system to ensure
that rewrites do actually preserve types (in contrast to the more dynamically-
typed Stratego, for example). It is also possible to use Kiama’s strategies in a
statically-checked type-unifying fashion. For example, the collectall combi-
nator used to collect errors in Section 3 operates on the Oberon-0 syntax but
produces collections of errors.

Another form of strategy-based term rewriting allows terms to contain con-
structs from both source and target languages while a translation is in progress.
Since Scala is statically typed we can only support this form of rewriting if the
source and target types are combined into one which is less than ideal. For this
reason, we usually write translations as normal recursive functions instead of
using rewriting. See Section 6 for details of how this is done in the Oberon-0
code generator.

The L2 transformation of FOR and CASE statements is defined simply as

everywhere (desugarFor + desugarCase)

which at every node in the tree first tries to apply the transformation to desugar
FOR statements and, if that fails, tries to apply the transformation to desugar
CASE statements. (An optimisation could easily be applied to attempt this
transformation only in sub-trees where statements can occur.)

The actual FOR transformation is defined by the desugarFor rewrite rule
which simply pattern matches and returns the replacement tree fragment (Fig-
ure 1). A FOR statement is translated into a block containing a declaration of a
variable to hold the limit of the iteration and a WHILE statement to implement
the loop. This approach means that we do not need a different variable name
for each FOR loop, since the scoping rules ensure that each loop will refer to the
correct variable even if FOR loops are nested. Note that the Oberon-0 source
language does not allow nested blocks, but our abstract syntax does so to make
these kinds of transformations easier to define.

A complication in this rule when using Kiama 1.6 is that we must be careful
not to insert the same node in more than one place. For example, when we want
to refer to the loop control variable in the assignment statement via idnexp, we
must use a different node to the appearance of that variable in the condition.
Cloning is necessary because attributes are cached using the node identity as
the key and the two nodes will usually have some different attribute values. In
fact, the compiler is conservative when it comes to reuse of attribute values.

11

val desugarFor =

rule {

case ForStatement (idnexp, lower, upper, optby,

Block (Nil, stmts)) =>

val limvarname = "limit"

val limexp = IdnExp (IdnUse (limvarname))

val incval = optby.map (_->value).getOrElse (1)

val rincval = IntExp (incval)

val cond = if (incval >= 0)

LeExp (idnexp, limexp)

else

GeExp (idnexp, limexp)

Block (

List (

VarDecl (List (IdnDef (limvarname)),

NamedType (IdnUse ("INTEGER")))

),

List (

Assignment (clone (idnexp), lower),

Assignment (clone (limexp), upper),

WhileStatement (cond,

Block (

Nil,

stmts :+

Assignment (clone (idnexp),

AddExp (clone (idnexp), rincval))))

)

)

}

Figure 1: Kiama desugaring of a FOR statement into a block containing a WHILE statement.
The underscore in the definition of incval turns the mapped expression into a function of one
argument that places that argument at the position of the underscore. The binary operator
:+ defined on collections appends an item to the collection.

12

The attribute caches are cleared after any transformation to ensure that old,
potentially incorrect values are not carried over to the new tree.

These restrictions imposed by Kiama 1.6 have been removed in Kiama ver-
sion 2. Specifically, our work on combining attribution and rewriting showed
how to separate tree identity from the underlying node structure to remove
confusion about which structure is being used to compute which attribute oc-
currences [8]. This change removes the need to explicitly clear attribute caches.
Kiama 2 also lazily clones trees where necessary so that explicit cloning is now
not necessary in rewrite rules such as that in Figure 1.

6. Code generation

The code generation components of the compiler comprise three main parts:
adjustments to the source tree to prepare for translation, translation from the
source tree to the target tree, and pretty-printing of the target tree. There is
one code generation component for each language level. The code generator
for one level invokes the code generator for the next lower level to deal with
constructs at that lower level.

At some language levels the source tree is more permissive than the target
tree and must be simplified before a straight-forward translation can be per-
formed. For example, the source tree for L2 may contain nested blocks that
arise from the desugaring of FOR and CASE statements. Similarly, L3 contains
procedure declarations that can appear at any nesting level. The target tree
requires C function declarations to appear at the top level. As noted in Sec-
tion 5 source-to-source transformations are used to make names unique and to
perform a simple version of lambda lifting that moves inner declarations to the
top level of the source program.

Once the source tree has been adjusted in this way, it can be easily translated
into a target tree. Oberon-0 constructs translate directly across to equivalent C
ones. The translation is performed by a collection of mutually recursive func-
tions that deal with each source tree construct and produce the corresponding
target tree construct. For example, Figure 2 shows the method that translates
L1 declarations to C declarations. The method returns a sequence since a sin-
gle Oberon-0 variable declaration could declare more than one variable and we
translate them to separate C variable declarations. User-level identifiers are
mangled to avoid clashes with pre-defined C names. The translator uses the
attributes value, to obtain the value of a constant initialising expression, and
deftype, to obtain a defined source type that must be translated to a target
type.

Finally, the target tree is printed to produce the C program text. Kiama has
a pretty-printing domain-specific language based on a Haskell library [7]. Fig-
ure 3 shows part of a method that translates C target trees into pretty-printing
documents. Combinators allow us to specify concrete translations such as insert-
ing a semi-colon or comma, as well as patterns of printing such as wrapping in
delimiters (parens, braces), layout using separators (hsep, vsep), and nesting
to increase indentation (nest). Constraints such as possible positions for line

13

def translate (d : Declaration) : Seq[CDeclaration] =

d match {

case ConstDecl (IdnDef (i), e) =>

Seq (CInitDecl (CVarDecl (mangle (i), CIntType ()),

CIntExp (e->value)))

case TypeDecl (IdnDef (i), t) =>

Seq (CTypeDef (CVarDecl (mangle (i),

translate (t->deftype))))

case VarDecl (is, td) =>

val t = td->deftype

is map {

case IdnDef (i) =>

CVarDecl (mangle (i), translate (t))

}

}

Figure 2: Translation of L1 declarations.

breaks are also indicated using combinators (line). Once a complete pretty-
printing document has been obtained, it is linearised subject to the specified
constraints to obtain the target text.

7. Artefacts

The Kiama Oberon-0 challenge artefacts are constructed by combining com-
ponents that each address a single processing task for a particular language.
The components, their compositions into tasks and artefacts, and the sizes of
all of these pieces are summarised in Figure 4. Each non-empty cell in the top
table represents a task and language-specific component, implemented by a sep-
arate Scala trait. The bottom table aggregates the component sizes according
to the artefacts in which they belong and includes support code. For example,
artefact A1 includes all components from the L1 and L2 levels for tasks T1 and
T2, plus driver code. (Our implementation actually has two simpler language
levels, Base and L0, below the first challenge level that are used to separate out
basic constructs. In this paper we aggregate Base and L0 into L1 so as to keep
to the challenge levels.)

In addition to the components shown in the top table of Figure 4, each
artefact includes two drivers. A generic compiler driver handles common tasks
such as command-line option processing, file handling and printing output as
required by the challenge. Each artefact also has a custom driver object that
composes a compiler driver with the relevant main components. The bottom
table in Figure 4 shows the sizes of each of these pieces. Note that this table is
double-counting compiler driver code that is reused in different artefacts.

To illustrate how an artefact is composed from processing components, con-
sider the driver for the A4 artefact (Figure 5). The A4 object is a singleton that

14

def toDoc (n : CTree) : Doc =

n match {

case CProgram (is, ds) =>

vsep (is map toDoc) <@>

vsep (ds map toDoc, semi)

case CInclude (s) =>

s"#include $s"

case CFunctionDecl (d, args, b) =>

toDoc (d) <+>

parens (hsep (args map toDoc, comma)) <+>

toDoc (b)

case CBlock (ds, ss) =>

braces (nest (lterm (ds map toDoc, semi) <>

lsep (ss map toDoc, empty)) <>

line)

...

}

Figure 3: Pretty-printing of C constructs.

is the main program for this artefact. It is defined in terms of the A4Phases

trait that represents the composed components. artefact, langlevel and
tasklevel are identification fields that are used by our testing framework. The
phases trait is not strictly necessary to define the artefacts; we could just make
the A4 object have the definition shown for the A4Phases trait. Having a sep-
arate trait is useful for testing, however, since the testing class can mix in the
trait and extend with tests.

Figure 6 shows how the components of the A4 artefact relate to components
at the different language levels. The layout mimics that of Figure 4: languages
on the x axis and components on the y axis. The square components in Figure 6
correspond to the traits that are mixed together to make the A4 artefact in
Figure 5, omitting the driver component. The A4 components use many other
components via extension (inheritance) or by mixing them in. Trait extension
and mixin composition together define the complete functionality of the artefact.

Scala uses a linearisation algorithm to transform the acyclic extension and
mix-in relationships into a linear sequence of traits that form the final compo-
sition of an artefact [11]. Linearisation enables us to unambiguously talk about
the superclass of a trait in a composition even though the trait itself does not
declare that it extends that superclass. This ability to independently define
traits and compose them in many different ways is the key to Scala’s modular-
ity approach. The details of the linearisation algorithm are not important here.

15

Task Component Language Total
L1 L2 L3 L4

T1 Oberon-0 tree 84 15 14 12 125
Syntax analyser 152 35 32 31 250
Oberon-0 printer 122 41 25 51 239

Sub-total 358 91 71 94 614

T2 Name analyser 205 17 81 22 325

T3 Type analyser 94 23 84 108 309

T4 Lifter 23 23
Desugarer 40 83 123

Sub-total 40 106 146

T5 C tree 93 18 8 119
Code generator 133 84 35 252
C printer 103 25 19 147

Sub-total 329 127 62 518

Total 1026 237 363 286 1912

Artefact
A1 A2a A2b A3 A4

Components 671 823 788 1024 1912
Compiler driver 90 90 90 113 133
Artefact driver 12 12 13 15 17

Total 773 925 891 1152 2062

Figure 4: Sizes of Kiama Oberon-0 compiler components grouped by challenge task and
language level (top) and artefacts, including drivers (bottom). Size is measured in non-blank,
non-commented lines of Scala code.

16

trait A4Phases extends base.TranslatingDriver

with L4.SyntaxAnalyser

with L4.source.PrettyPrinter

with L4.NameAnalyser

with L4.TypeAnalyser

with L2.Lifter

with L2.Desugarer

with L4.CCodeGenerator

with L4.c.PrettyPrinter {

def artefact = "A4"

def langlevel = 4

def tasklevel = 6

}

object A4 extends A4Phases

Figure 5: The artefact driver for A4 which composes a driver appropriate for artefacts that
translate, the L2 lifter and desugarer components, and the L4 components.

It suffices to know that if T extends or mixes-in U then T will precede U in any
linearisation where they both occur. Also, a trait will only appear once in the
linearisation even if it is extended or mixed-in by more than one other trait.

The linearisation defines the behaviour when a particular component calls
super.m for some processing method m. For example, recall the errorsDef

method described in Section 3. Each name and type analyser defines this
method to contribute its errors. An implementation of errorsDef does its
processing and calls super.errorsDef to handle other errors. For example, in
the A4 artefact the L4 type analyser extends the L3 type analyser so we know
that calling super.errorsDef in the former will eventually call errorsDef in
the latter, possible with intervening error processing from other components.
This approach means that a particular component doesn’t need to know which
other error-providing components are used, unless it directly extends them or
mixes them in. A component can be composed with many such components to
form different artefacts without changing the code of the components.

A similar method-overriding approach is used to compose source-to-source
transformation and code generation components. For example, the interface
to a source-to-source transformation component is a transform method that
takes a source tree and returns a (possibly transformed) source tree. Transfor-
mations are extended by overriding transform to add more processing and by
calling super.transform to invoke lower-level transformations. Exactly which
superclass’s method is called depends on a particular linearisation. For exam-
ple, in the A4 artefact when the L2 lifter calls super.transform it will call
the transform method in the L2 desugarer, since the L2 desugarer is the next

17

L1 L2 L3 L4

Syntax analyser

Oberon-0 printer

Name analyser

Type analyser

Desugarer

Lifter

Code generator

C printer

A extends B

AB AB

mixin: A ... with B

Figure 6: Component relationships in the A4 artefact. The A4 components are squares. Other
components that are extended or mixed-in are circles. Solid lines indicate where a component
extends another; dashed lines indicate a mix-in relationship.

transformation component in the A4 artefact linearisation. When the L2 desug-
arer calls super.transform it will call the method in the L1 desugarer, again
courtesy of the linearisation.

This composition approach is based on extending methods. A variant is
required to extend values which are used in the compiler to define parsers (Sec-
tion 2) and attributes for semantic analysis (Section 3 and Section 4). It is
tempting to try an approach to composition that just uses super references to
access values in other components, as was done for methods. However, this
approach doesn’t work since Scala doesn’t allow super to be used on values. In-
stead, we only use a value at the lowest level and dispatch to associated methods
that can then be extended as described above.

For example, we define a single L1-level statement value to be the parser for
the simplest kinds of statements. This value simply calls an associated method
statementDef method which actually defines the parser.

val statement = statementDef

def statementDef = ...

To extend the parsing of statements we simply override statementDef as in the
error handling, transformation and translation cases. Note that an overriding
component doesn’t have to just add alternatives to a parser, it can replace the
parser entirely. We use this approach when adding procedure declarations to
replace the previous syntax which only included constant, type and variable

18

declarations. Adding a new alternative is not necessary since we can use the
overridden definition as part of a new one that adds procedures, as in:

override def declarationsDef =

super.declarationsDef ~ rep (procedureDeclaration <~ ";")

(where we omit actions). It would be possible to get the same effect by adding
an alternative as long as the new alternative was added before the overridden
ones to avoid ambiguity. Clearly this approach has limitations since in an em-
bedding approach it is non-trivial to insert new alternatives in the middle of
overridden parser definitions or adjust overridden definitions without breaking
the encapsulation of the parser implementation.

The approach of calling out to a method is also used to extend attribute val-
ues. The method associated with an attribute defines the equations by cases for
a particular component and extensions define cases for new equations. An im-
portant consequence of this approach is that we get only one cache per attribute
(since there is only a value at the L1 level) instead of one per extension.

While the composition that results in the final A4 artefact is complex when
regarded as a whole, each aspect of this composition is simple and allows us to
separate the code for each component. Each trait extends or mixes-in just the
traits that it needs to do its work. For example, the L3 syntax analysis com-
ponent just extends the L2 syntax analysis component by augmenting existing
parsers or adding new ones for L3 constructs. The L3 type analyser extends
the L2 type analyser and mixes in the L3 name analyser since it needs to use
entity information for the L3 level to determine L3 types. When an artefact
is assembled out of traits, we just choose the functionality that we need in the
artefact and mix them together. Scala’s linearisation algorithm determines an
order that is compatible with all of these local dependencies.

Overall, this design leads to an extremely flexible structure in which each
component is focused on a single task and sub-language. The decision about
how to compose the pieces is left until the traits are mixed together. The Scala
compiler statically ensures that a particular composition is legal.

8. Reflection

A core tenet of the Kiama design is to reuse as much as possible from the
host Scala language. Aspects such as data structure implementation, modular-
ity and composition are left to Scala. Kiama itself is thereby free to focus on
core language processing issues. The Oberon-0 compiler illustrates this reliance
on Scala quite well. It makes heavy of use of powerful features including case
classes and pattern matching, as well as more mundane ones such as expression
syntax and definition mechanisms such as values and methods. The compiler
would be much harder to write in a language that didn’t provide these features.
Sometimes standard programming approaches that would be provided by any
language were sufficient. For example, just using recursive translation meth-
ods in the code generator is appropriate since they provide just the pattern of
computation that is needed.

19

The trait and mixin features provided by Scala proved to be invaluable for
structuring the compiler code. We were able to keep components separate from
each other and assemble them into artefacts in flexible ways. This was our first
non-trivial use of Scala mixins for this purpose and we believe they passed with
flying colours.

This experience reinforced our belief that there is no need for domain-specific
languages to explicitly address “bigger” issues such as modularity and compo-
sition. By embedding DSLs in a sufficiently powerful host language, we can
keep the DSLs focussed on the problem areas that they are aiming to address.
This situation contrasts with that of external DSLs where there is always a
tendency to extend the languages beyond their problem domains by adding
general-purpose features. For example, external DSLs frequently invent ex-
pression languages and features for modularity and namespace control, none of
which are central to the purpose of the DSL. The DSL implementation is more
complicated than it has to be and users have to learn features that are similar
to other languages but are often idiosyncratic.

Of course, embedding DSLs as libraries in a host language implies that they
must live within the limitations of the host. For example, the domain-specific
analysis and optimisation that we can do for Kiama DSLs is limited, since all
of the processing is performed by the Scala compiler. The result is that some
checks that would ideally be performed statically are deferred until run-time.
For example, it is not possible to statically analyse whether a Kiama attribute
occurrence depends on itself, a check that many attribute grammar systems
make. Further, it is not possible to implicitly compose definitions by reusing
names as is often done in external domain-specific languages. Kiama requires
explicit composition since Scala does.

These restrictions did not impede the development of the Oberon-0 com-
piler, and might even be considered an advantage since features like implicit
composition can make code harder to understand. Notwithstanding the need to
live within Scala’s limitations, the notations that the Scala parsing library and
Kiama provide are close enough to domain-specific ideals to yield clear code.
We have not observed any performance issues in this compiler arising from the
lack of domain-specific optimisations.

Recent versions of Scala add powerful macro processing facilities [12]. At
present, we do not perform any meta-level manipulation of Kiama-based pro-
grams using macros, except for extraction of user-level names for use in de-
bugging and profiling [13]. Therefore, we retain a relatively simple, lightweight
implementation. Relying on macros for domain-specific processing would tie
Kiama closely to the internals of the Scala implementation, which we prefer to
avoid.

The exercise of building this compiler made it clear that Kiama could be more
helpful in a number of areas. Combining attribution and rewriting can be prob-
lematic. For example, if you have already calculated an attribute of a tree node
and that node is shared by a rewritten tree, what happens to the attributes?
When using Kiama 1.6 our solution is to clearly separate attribution and rewrit-
ing tasks, resetting all attribute values between major processing tasks. In work

20

conducted since the challenge we have developed techniques for systematically
separating the relationships between tree nodes and their identity-based use
in particular structures [8]. Kiama 2 incorporates this approach and therefore
makes it easier to safely combine attribution and rewriting.

Tension between attribution and rewriting is also apparent when a node is
shared in the output of a rewrite rule. Since the attribution implementation is
based on the identity of a node, in Kiama 1.6 it is necessary to manually clone
nodes rather than use them in more than one place. Kiama 2 lazily clones nodes
so accidentally forgetting to clone is not possible.

Kiama does not currently provide concrete object syntax for use in pattern
matching and tree construction. Adding it would make code such as that in
Figure 1 much easier to write and understand. Scala’s recent addition of power-
ful string interpolation features offers a direction for support of concrete object
syntax.

9. Conclusions

Overall, we found the challenge to be a very useful exercise. Compiling
Oberon-0 is not an extremely difficult task, but it incorporates aspects of any
compilation process except for optimisation. Building the compiler forced us
to explore composition of components in a more complex setting than we had
tried before. We believe that the result shows the efficacy of the Kiama approach
that mixes general purpose programming with library capabilities for common
language processing tasks.

Acknowledgements

Thanks to Niklas Fors, Görel Hedin, Tijs van der Storm and the anonymous
reviewers for comments that considerably improved the paper.

References

[1] A. M. Sloane, Lightweight Language Processing in Kiama, in: Generative
and Transformational Techniques in Software Engineering III, vol. 6491 of
Lecture Notes in Computer Science, Springer, 408–425, 2011.

[2] M. Odersky, L. Spoon, B. Venners, Programming in Scala, Artima Press,
2 edn., 2010.

[3] N. Wirth, Compiler Construction, Addison-Wesley, 1996.

[4] A. M. Sloane, L. C. L. Kats, E. Visser, A pure embedding of attribute
grammars, Science of Computer Programming 78 (2013) 1752–1769.

[5] E. Visser, Program Transformation with Stratego/XT: Rules, Strategies,
Tools, and Systems in StrategoXT-0.9, in: Domain-Specific Program Gen-
eration, vol. 3016 of Lecture Notes in Computer Science, Springer, 216–238,
2004.

21

[6] E. Visser, WebDSL: A Case Study in Domain-Specific Language Engineer-
ing, in: Generative and Transformational Techniques in Software Engineer-
ing II, International Summer School, GTTSE 2007, vol. 5235 of Lecture
Notes in Computer Science, Springer, 291–373, 2007.

[7] S. Swierstra, O. Chitil, Linear, bounded, functional pretty-printing, Journal
of Functional Programming 19 (1) (2008) 1–16.

[8] A. M. Sloane, M. Roberts, L. G. C. Hamey, Respect Your Parents: How
Attribution and Rewriting Can Get Along, in: Proceedings of the Interna-
tional Conference on Software Language Engineering, vol. 8706 of Lecture
Notes in Computer Science, 191–210, 2014.

[9] B. Ford, Parsing expression grammars: a recognition-based syntactic foun-
dation, in: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, vol. 39, ACM Press New York,
NY, USA, 111–122, 2004.

[10] U. Kastens, W. M. Waite, Modularity and Reusability in Attribute Gram-
mars, Acta Informatica 31 (1994) 601–627.

[11] M. Odersky, M. Zenger, Scalable Component Abstractions, Proceedings of
ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications (2005) 41–57.

[12] E. Burmako, Scala Macros: Let Our Powers Combine!, in: Proceedings of
the 4th Annual Scala Workshop, ACM, 2013.

[13] A. M. Sloane, M. Roberts, Domain-specific program profiling and its ap-
plication to attribute grammars and term rewriting, Science of Computer
Programming (2014) 488–510.

22

