
Respect Your Parents: How Attribution and
Rewriting Can Get Along

Anthony M. Sloane, Matthew Roberts, and Leonard G. C. Hamey

Department of Computing, Macquarie University

Abstract. Attribute grammars describe how to decorate static trees.
Rewriting systems describe how to transform trees into new trees. Attri-
bution is undermined by rewriting because a node may appear in both
the source and product of a transformation. If an attribute of that node
depends on the node’s context, then a previously computed value may
not be valid. We explore this problem and formalise it as a question of
ancestry: the context of a node is given by the tree’s parent relationships
and we must use the appropriate parents to calculate attributes that de-
pend on the context. We show how respecting parents naturally leads to
a view of context-dependent attributes as tree-indexed attribute families.
Viewed in this way, attribution co-exists easily with rewriting transfor-
mations. We demonstrate the practicality of our approach by describing
our implementation in the Kiama language processing library.

1 Introduction

Tree attribution and tree rewriting are two fundamental paradigms of software
language engineering. On the one hand, attribution focuses on calculating prop-
erties of a given program represented as a syntax tree. Attribute grammars are
a standard way to declaratively specify the way in which trees should be at-
tributed. On the other hand, rewriting concentrates on transforming a program
represented by a syntax tree into a program or other artefact represented by
another tree.

Attribution and rewriting are more usefully deployed together to solve a lan-
guage engineering task. For example, in a compiler we might obtain an initial tree
from a syntax analyser and perform some attribution on it to check some basic
static properties. We might transform the initial tree into another one, perhaps
to desugar complex constructs into simpler ones. Following this transformation,
we might calculate attributes of the desugared tree to determine information
that is needed for a further transformation process that produces the output we
desire such as compiled code.

The ease with which such a process can be described is deceptive, since the
detail of combining attribution and rewriting contains a subtle trap. It is common
for rewriting implementations to use immutable data representations and deploy
structure sharing since duplication of nodes can lead to significant extra memory
use [1]. For example, a desugaring transformation might retain some parts of the
input tree if those parts do not contain any complex constructs.

If nodes are shared between trees, how do we think of their attributes? These
nodes are unchanged by the rewriting process and are shared by the before and
after trees for efficiency reasons. A shared node may have different ancestors
in the two trees and attributes that depend on these ancestors may well have
different values depending on which set of ancestors we use. For example, the
type of an expression may be different after rewriting if the type of a variable it
uses has been changed. The type of the variable is given by the context of the
expression in a particular tree, not as a property of the expression node itself.
The core problem is to identify which attributes are valid after rewriting and
which are not so that we do not need to recompute valid ones and we can avoid
using invalid ones.

In this paper we describe how we addressed this problem in the context of
our Kiama Scala-based language processing library [2], its implementation of at-
tribute grammars [3] and its use of strategic term rewriting for transformation.
Since it is based on Scala, Kiama uses object representations for trees and refer-
ence equality to implement node identity. Our aim was to develop a disciplined
way to structure Kiama-based attribution under these conditions so that we
could perform arbitrary rewriting of trees without invalidating previously calcu-
lated attribute values or obscuring the identity of the trees in which attribute
values were valid.

The essence of our approach is that attribution should be performed with
respect to the whole tree, not just with respect to a node in the tree (Section 2).
Context-dependent attributes rely on the parent relationships to explore the
context and its properties. It is the tree that defines the parent relationships
between nodes, not the nodes themselves. If we base context-dependent attribu-
tion solely on the identity of a node then we are asking for trouble since that
node may have more than one context if it is shared.

Our technical solution is to define context-dependent attributes as tree-
indexed attribute families, not as single attributes (Section 3). To use one of
these attribute families we must supply a tree to get an attribute that is valid
for computations within that tree. At that point, regular attribute evaluation
takes over without change. With attribute families, it becomes impossible to
use a context-dependent attribute without thinking about the tree in which it
is computed. Moreover, this tree-based focus is completely independent of the
mechanism by which the tree was obtained. We can use any rewriting process
we like without affecting the attribution.

We have implemented this approach in Kiama (Section 4). We previously
relied on a mutable parent field in each tree node which was updated after a
rewriting step. Because the parent had potentially changed it was necessary to
erase all attribute values in case they were now invalid in the rewritten tree.
Our changes mean that the mutable parent field has been removed, but no other
changes were necessary to the core of the attribution and rewriting components.
All of the existing Kiama test specifications were easily moved to the new scheme.
We can now interleave attribution and rewriting of trees that share nodes without
any danger.

We compare our approach to those of related attribute grammar-based sys-
tems that feature some element of rewriting or tree transformation (Section 5).
We believe our approach is the first time that a general scheme for attribution
has been given that can interoperate safely with arbitrary rewriting without the
implementations of attribution or rewriting being dependent on each other.

2 Background

We begin by discussing examples of attribution and rewriting of simple tree
structures to illustrate where problems can occur. This discussion motivates our
solution which we describe informally here and more formally in the next section.

Our examples are based on simple arithmetic expressions that conform to
the following context-free syntax rules:

Top : Root ::= Node
Num : Node ::= Int
Plus : Node ::= Node Node

Thus, the tree

Top(Plus(Plus(Num(1),Num(2)),Plus(Num(3),Num(4))))

represents the expression (1 + 2) + (3 + 4) and is depicted in Figure 1.

2.1 Attribution

Suppose that we are interested in the height of nodes as measured by their max-
imum distance from a leaf. The following attribute grammar equations suffice to

Plus

Plus

Num 1 Num 2

Plus

Num 3 Num 4

Tree A

Top

Fig. 1. Tree A represents the arithmetic expression (1 + 2) + (3 + 4).

specify this attribute.1

Num : Node ::= Int
Node.height = 0

Plus : Node1 ::= Node2 Node3

Node1.height = 1 + max(Node2.height,Node3.height)

The height of a Num is always zero since it is a leaf. The height of a Plus node
is one more than the maximum of the heights of its children. Subscripts are
used in the equations to distinguish between multiple occurrences of the Node
symbol in Plus rule. Applying these equations in Tree A tells us that the height
of node 1 is two and the height of node 4 is zero.

In effect, the height attribute equations define a pattern of computation that
proceeds upward in the tree from the leaves to the node of interest. Traditionally,
this kind of attribute is called a synthesized attribute.

In contrast, some attributes naturally depend on the context of the node at
which they are computed and the information flows downward in the tree. For
example, consider calculating the depth of a node in a tree which is its distance
from the root. In traditional terminology, depth is an inherited attribute whose
definition is given by equations that are associated with every rule that specifies
context for the Node symbol.

Top : Root ::= Node
Node.depth = 0

Plus : Node1 ::= Node2 Node3

Node2.depth = Node1.depth + 1
Node3.depth = Node1.depth + 1

These equations explain why the Top production is needed. Without it, there
would be no context for the topmost Node. The Top context defines a depth
of zero for its constituent Node, whereas a Plus context increments the depth
by one. Applying these equations in Tree A tells us that the depth of node 1 is
zero and the depth of node 4 is two.

The height and depth attributes are simple but attributes like them are the
basis of any attribute grammar. Information is propagated up or down the tree
from the place where it is available to where it is needed. A typical synthe-
sized attribute is the value of a constant expression in a programming language.
Name analysis can be performed using attributes that propagate information
about declarations up to nodes that define scopes and then down to nodes that
represent uses.

1 Throughout the paper we use a generic attribute grammar notation that can easily
be translated into the notations of particular tools. Context-free grammar rules are
augmented by equations that specify how to calculate attributes of tree nodes using
constants, pre-defined operations and the values of attributes at other nodes.

Modern attribute grammar systems build more advanced concepts on top
of synthesized and inherited attributes, such as short-hand notations to make
it easier to transport information up and down the tree, and attributes defined
by fixed point computation. Extensions such as reference attributes and circular
attributes are also supported by Kiama and similar systems. In this paper we
focus on simple attributes in our examples, but the technique extends to more
complex ones, since it does not affect the attribute evaluation mechanisms.

2.2 Rewriting

With the height and depth attributes in place, we now consider a rewriting
transformation. The left-hand side of Figure 2 shows Tree A, repeated from
Figure 1 with node numbers added for identification. The right-hand side of
Figure 2 shows Tree B, a possible result of rewriting Tree A. In Tree B a new
Plus node with a zero left child has been added at the top, and the right-most
leaf has been incremented. These changes are typical of the effects of rewriting:
embedding an existing tree in a new context, and changing a deeply-nested sub-
tree.

Plus

Plus

Num 1 Num 2

Plus

Num 3 Num 4

1

2 3

4 5 6 7

Tree A

Num 0 Plus

Plus

Num 1 Num 2

Plus

Num 3 Num 5

Plus

2

4 5 6

9

10 11

12

13

Tree B

Top

Top

0

8

Fig. 2. Trees A and B represent arithmetic expressions (1+2)+(3+4) and 0+((1+2)+
(3 + 5)), respectively. The superscripts number the individual nodes for identification
in the text.

If we assume that sharing is allowed, that Tree B was produced from Tree A,
and that trees are immutable, Tree B can share nodes 2, 4, 5 and 6 with Tree A.
Nodes 9 and 10 in Tree B have no counterpart in Tree A. Node 13 results from
rewriting node 7. Whenever a node is rewritten, all its ancestor nodes must also
be replaced because they have at least one new child, even though they have not
been explicitly transformed. This is the reason for replacing nodes 1, 3 and 7 by
nodes 8, 11 and 12.

2.3 The problem and solutions

The central problem that we aim to address is how to compute the attributes
of nodes that are shared between two trees. In some cases, the way that the
attribute is computed means that its value cannot be affected by the sharing.
Specifically, computation at a shared node n of an attribute that is only de-
pendent on information from the sub-tree rooted at n cannot be influenced by
rewriting since that sub-tree has not changed. For example, the height attribute
is such an attribute and it is easy to see that the heights of nodes 2, 4 and 5 are
the same in both Tree A and Tree B. In other cases, the nature of the attribute
is to depend on the context of the node at which it is evaluated. A shared node
might have different contexts in the two trees and hence different values for the
attribute in those trees. For example, the depth of node 2 in Tree A is one, but
in Tree B it is two since an extra node has been added above it.

The simplest approach to combining attribution and rewriting in the pres-
ence of sharing is to just calculate all of the attributes during a traversal of the
tree from the root. It does not matter if a node is shared if we reach it via a
path from the root in the relevant tree since that path gives us the context in
that tree. Modern attribute grammar systems tend to prefer a more dynamic
approach where attribute occurrences are only evaluated when needed [4, 5, 3].
Conceptually we ask a node for the value of one of its attributes which might trig-
ger evaluation of attributes of other nodes. A primary motivation for this form
of evaluation is interactive applications where we want to respond as quickly as
possible with just what is needed. For example, in a development environment if
we want to display a tool-tip for the code under the mouse pointer, we don’t want
to wait for a traversal to calculate every attribute if we can get the appropriate
tool-tip with a much smaller set.

Assuming that we don’t want to re-evaluate all of the attributes, we need
a way to evaluate an attribute in a rewritten tree without having the context
be an implicit piece of information in the evaluator. Our key observation is
that attributes like depth depend on the parent relationships of the tree in
which it is used. We must respect the parents in order to get a sensible result.
Accordingly, our general solution is to regard context-dependent attributes as
being parameterised by the tree in which they are being evaluated. In other
words, instead of being attributes, they are tree-indexed attribute families. We
must first supply the relevant tree and then we get an attribute that can be used
safely for computations in that tree.

This approach has three main advantages. First, attribute families that are
tree-indexed cannot be used without explicitly supplying the appropriate tree.
This requirement removes the possibility of confusion that is present if the con-
text is a property of tree nodes independent of the trees in which they occur.
Second, because the tree has a separate identity to the nodes within it, a node
can participate in more than one tree without problem. Significantly, attribution
and rewriting do not need to be aware of each other, yet can operate together.
Third, not having to erase attributes after rewriting should lead to efficiency
gains since attributes that are still valid do not have to be re-calculated.

2.4 Kiama

Our main practical motivation for this work was to improve the implementation
of attribute grammars in the upcoming 2.0 release of our Kiama language pro-
cessing library [2, 3]. Kiama combines attribute grammars with strategic term
rewriting in the style of Stratego [6]. We aimed to make context-dependent at-
tributes safer when used in concert with rewriting based on generic tree traver-
sals.

Kiama departs somewhat from the traditional view of attribute grammars
used above to define the height and depth attributes. Instead of being defined by
associating equations with grammar productions, Kiama attributes are defined
by pattern matching against the tree structure at the node of interest. When a
pattern matches a node, then the corresponding expression is used to calculate
the value of the attribute at the node. In effect, a pattern and corresponding
expression together define an equation for the attribute. Section 3 formalises the
relevant aspects of this way of writing attribute grammars and gives examples.

Kiama’s focus on pattern matching to decide which equation to apply means
there is no clear distinction between synthesized and inherited attributes. In
fact, one equation for an attribute can use the context to define the attribute
value (inherited aspect) while another equation for the same attribute can use
just child nodes (synthesized aspect). In a traditional setting the synthesized and
inherited aspects would need to be split into separate attributes since one would
need to be defined in the context of the relevant node. A consequence of Kiama’s
approach is that it is not necessary to introduce extra context productions in
order to specify inherited attributes of the root of the tree. For example, we can
define the expression example from the previous sections without needing the
extra Top production to add context at the root of the expression tree. Section 3
shows how this can be done.

The attribution libraries in Kiama 1.x assume that the tree nodes contain
a mutable parent field [3]. After a rewriting step, the parent fields must be
updated to reflect the participation of shared nodes in the new tree, since those
fields represent the parent relationships of the old tree. Updates to the parent
fields potentially invalidate previously computed attribute values. To be safe,
we must currently erase all of those values. There is no static check that this
operation is performed and subtle bugs can be created if it is omitted. Even if the
erasure is performed, we waste effort if erased values would have still been valid
in the new tree. Moreover, after rewriting we cannot compute context-dependent
attributes in the old tree at all since its parent information in shared nodes has
been overwritten.

The approach developed in this paper removes these drawbacks. Kiama no
longer assumes the existence of mutable parent fields. It is not possible to access
a context-dependent attribute without specifying which tree is relevant. Com-
puted attribute values remain valid after rewriting since the parent relationships
from the old tree are still valid. We can calculate attributes on the old tree after
rewriting just by using the old tree’s parents. Attribution and rewriting don’t
have to know details of each other’s implementation. In summary, our new ap-

proach means that attribution and rewriting can be freely mixed and that the
possibility of bugs due to subtleties of their interaction is greatly diminished.

3 How to respect your parents

In this section we make these ideas concrete by formalising Kiama-style attribute
grammars that respect their parents. We are only concerned with the dynamic
evaluation behaviour of our attribute grammars. Therefore, we simplify the pre-
sentation by assuming that they do not contain any static errors that in Kiama
would be ruled out by the Scala compiler. For example, we assume that the
patterns in attribute definitions are non-linear and that the right-hand side of
a case does not refer to unbound variables. We assume that constructors are
always applied to the correct number of arguments in tree construction and in
patterns. We do not consider aspects such as which attributes are defined for
which node types since these aspects are orthogonal to our main topic.

3.1 A core attribute grammar language

Figure 3 summarises the abstract syntax of programs in a core attribute grammar
language that is consistent with Kiama. The core language omits more complex
Kiama attributes such as reference, higher-order and circular attributes. Each
of these kinds of attribute can be incorporated into our scheme with no extra
mechanisms and we have done so in our implementation.

A program consists of one or more definitions of trees and attributes, fol-
lowed by one or more expressions that calculate values using those definitions.
Definitions can bind variables to tree values. We assume that x ranges over the
names of global variables and over the names of variables bound by pattern
matching. Trees are defined over constructors Cn of arity n >= 0 that we as-
sume are pre-defined and fixed. A tree is created by an application Cn(t1, . . . , tn)
of a constructor Cn to sub-trees t1, . . . , tn.

Program p ::= d+e+

Definitions d ::= x = t tree-valued binding
| a = c attribute definition by cases

Trees t ::= Cn(t1, . . . , tn) construction
Cases c ::= case p → e match and evaluate

| c c sequence
Patterns p ::= x variable pattern

| Cn(p1, . . . , pn) constructor pattern
Expressions e ::= fn(e1, . . . , en) function call

| x.a evaluate attribute

Fig. 3. Abstract syntax of the core attribute grammar language.

Definitions can also bind attribute names to equations given by one or more
pattern matching cases. The meta-variable a ranges over the names of attributes.
Each case of an attribute definition specifies a match of a pattern against the
node at which the attribute is being evaluated. If the pattern matches, the
corresponding expression is evaluated to determine the value of the attribute
at that node. Cases are applied in program order. Patterns are either variable
patterns x which match any tree, or constructor patterns Cn(p1, . . . , pn) which
match only trees whose root is formed by the constructor Cn and whose children
match the patterns p1, . . . , pn.

We assume fn ranges over the names of globally available functions with arity
n >= 0. An expression fn(e1, . . . , en) applies function fn to the expressions
e1, . . . , en. To simplify the presentation we assume that we can use standard
mathematical functions using infix notation. We also assume the existence of
a function for conditional expression evaluation written e ? e : e which only
evaluates one of its second and third arguments.

An expression x.a evaluates the attribute a at node x. Evaluation of this
form of expression involves applying the definition of attribute a to the node
bound to variable x.

We can write the height attribute from Section 2 using the core language as
follows.

height =
case Num(i) → 0
case Plus(l, r) → 1 + max(l.height, r.height)

3.2 Parents as node properties

One way to incorporate access to parents in this Kiama view of attribute gram-
mars is to regard them as being properties of the tree nodes. Formally, we can
assume that there is a global function parent(x) that returns the parent of a
node x. We assume an auxiliary function isRoot(x) that returns true if and
only if parent is not defined at x.

We can write the depth attribute from Section 2 as follows using the parent
and isRoot functions.

depth =
case n → isRoot(n) ? 0 : parent(n).depth + 1

As discussed in Section 2, the problem with this approach is that a given node
x may participate in more than one tree. Which parent do we get when we
call parent(x)? Which root returns true from isRoot? If the parent property
cannot change, then presumably we get the parent of the first tree in which x
participates. We will not be able to correctly compute attributes for later trees.
If the parent property is mutable, then we have to be careful to compute only
attributes on the old tree before the property changes and only attributes of
the new tree after the change. This dependence on mutability makes attribute
computations fragile.

3.3 Parents as tree properties

Our solution is to focus on the parent relationships of a tree, rather than on
the parents of nodes. The parent relationships of a tree can be calculated by
traversing from the root, if they are not otherwise available. Thus, parent is
now a function from the relevant tree to the parent partial function for that
tree. We now write parent(x1)(x2) to get the parent of node x2 in the tree that
is rooted at the node bound to x1. isRoot(x2) becomes isRoot(x1)(x2) where
x1 is the root of the relevant tree; this operation can be implemented by a simple
reference equality test.

In this new scheme, the definition of depth must be modified to have access
to the current tree that is being attributed since it needs to use that tree’s
parent relationships. A simple way to think of this modification is that the depth
attribute becomes an attribute family indexed by the tree. In other words, we
don’t just have one depth attribute, we have one for each possible tree.

We formalise attribute families by extending the core language to include a
new definition form.

Definitions d ::= . . . previous forms
| a(x) = c attribute family

In the attribute family form, the variable x refers to the tree rooted at the node
bound to variable x. We also need a new expression form to pass the tree rooted
at x1 to a family a to get an instance that can be evaluated at the node bound
to x2.

Expressions e ::= . . . previous forms
| x2.a(x1) instantiate attribute family and evaluate

With these extensions, the definition of the depth attribute becomes

depth(x1) =
case x2 → isRoot(x1)(x2) ? 0 : parent(x1)(x2).depth(x1) + 1

Thus, the attribute is now insulated against tree changes since it is statically
impossible to use depth without specifying the relevant tree.

3.4 Discussion

The key benefit of the attribute family approach is that by construction we
rule out accessing the parent of the wrong tree, rather than allowing access to
the parents at any time and relying on discipline to access them only at an
appropriate time.

If we are defining an attribute that does not use the context, it can be defined
by a regular definition since it does not need the tree. If we need the context,
then we must use an attribute family and give a name to the context in the
family definition. The dependence on the tree is now explicit and the user of an
attribute family is required to provide the appropriate tree.

What about an attribute a1 that does not require the context directly but
whose definition uses an attribute a2 that does require the context? We can
choose from a couple of options depending on the situation. The first option
should be used when it is meaningful for a1 to be defined with respect to a
specific context, not for all trees. We would define a1 using a normal definition
and pass that specific context when invoking a2. For example, this case occurs
when code has been transformed in a way that changes types but error messages
should refer to user-specified types as defined by the original tree. The second
option should be used when a1 must be defined for all contexts and, if being
applied in tree t, calls to a2 should use t too. In this case we would define both
a1 and a2 as families.

Another issue in the definition of an attribute like depth above is what
happens if the node x2 is not actually in the tree rooted at x1? In this case x2 is
not the root and the parent(x1) relation is not defined at x2. Since our setting
is a pure embedding of attribute grammars in another language, there is no easy
way to statically prevent this situation. Nodes can be created at any time and the
host language provides no connection between a node and the tree(s) that it is
in. We currently ensure that parent and similar functions cause a run-time error
if passed a node that is not in the tree which they are using. We are investigating
ways to use Scala’s type system to check for this situation statically. A similar
approach based on a separately-defined attribute grammar language could build
more safe-guards into the specification language.

4 Kiama Implementation

We now describe how we implemented the approach from the previous section.
Kiama is a library for the Scala programming language [7] so we are able to
use Scala’s general-purpose facilities to implement attribute families. Kiama’s
existing attribute implementation was minimally affected by the changes. We
just removed the implementation of the mutable parent field and information
derived from it. Kiama’s rewriting library was unaffected by the changes.

4.1 Relations

The base of our implementation is a new generic Relation[T,U] type defined
over two types T and U (Figure 4). A relation is created from a sequence of
tuples that define its graph. The operations are derived from the graph and are
standard. For example, compose allows a relation to be composed with another
that has a compatible type.

Because Kiama is based on Scala it is easy to provide relations with pat-
tern matching support. Scala supports user-defined pattern matching via ex-
tractors [8]. We use extractors to allow any relation to be used in a pattern.
For example, if R is a relation, then the pattern R(p) will succeed if and only if
R contains only a single tuple where the first component matches the node to
which the pattern is applied and the second component matches p. The pattern

class Relation[T,U] (val graph : Seq[(T,U)]) {

// Composition

def compose[S] (st : Relation[S,T]) : Relation[S,U]

// Domain

def domain : Seq[T]

def containsInDomain (t : T) : Boolean

// Range

def range : Seq[U]

def containsInRange (u : U) : Boolean

// Image and pre-image

def image (t : T) : Seq[U]

def preimage (u : U) : Seq[T]

// Invert

def invert : Relation[U,T]

// Union

def union (r : Relation[T,U]) : Relation[T,U]

}

Fig. 4. Part of Kiama’s Relation interface. A relation is defined over the generic types
T and U.

R.pair allows matching patterns against both the first and second components;
R.pair(p1, p2) will succeed if and only if R contains only a single tuple where the
first component matches pattern p1 and the second component matches p2. We
show concrete examples of using this sort of pattern matching in Section 4.3.

4.2 Trees

The Tree class uses the general relation type to provide access to trees and their
node relationships. Figure 5 shows representative parts of the Tree interface. A
Tree[T,U] is created by providing the root value of some type U. The base type
of all tree nodes is some other type T and we require that U is a sub-type of T
(i.e., U <: T).

The base node type T is required to be a sub-type of Scala’s Product type
which enables us to determine the tree structure generically. Product values
have generic access to their component fields. The child relation is computed
by traversing throughout the tree from the root collecting pairs of nodes where
one is a direct descendant of the other. We compute this value lazily since there
is no need to perform that traversal if we don’t use the child relation.

The Tree class also provides a suite of other relations which are derived from
child. The parent relation is just the inverse of child. siblings is calculated

class Tree[T <: Product,U <: T] (val root : U) {

// Base child relation

lazy val child : Relation[T,T]

// Derived relations

lazy val parent : Relation[T,T]

lazy val siblings : Relation[T,T]

// Properties

def index (t : T) : Int

def isFirst (t : T) : Boolean

def isLast (t : T) : Boolean

def isRoot (t : T) : Boolean

}

object Tree {

def isLeaf[T <: Product] (t : T) : Boolean

}

Fig. 5. Part of Kiama’s Tree interface. Generic type T is the base type of tree nodes
and type U is the type of the root node. The Tree object provides operations that do
not depend on a specific tree.

by composing the parent relation with child. For example, if a is a child of b
and b is a parent of c then a is a sibling of c. Other similar derived relations
not shown in the figure give access to previous and next node, and so on. All of
these relations are computed lazily since they might not be needed.

Some node properties are not dependent on the tree since they only depend
on components of the node or its children. (Recall that nodes are immutable
so these factors cannot change if a node is shared among trees.) For example,
whether or not a node is a leaf cannot change if that node appears in more than
one tree. Tree-independent operations such as isLeaf are static methods that
accompany the Tree class.

4.3 Examples

In the Kiama setting, a tree-indexed attribute is just a class or a method that
takes a Tree-value argument. For example, we can define the height and depth
attributes from earlier sections as shown in Figure 6.

height is a regular attribute defined as it would be with Kiama 1.x. attr
is the Kiama attribute creation method which takes a single argument that is a
collection of cases to specify the attribute equations. attr implements attribute
caching and dynamic circularity testing on top of the equation definitions. We
made no changes to attr for this present work.

val height : Node => Int =

attr {

case Num (_) => 0

case Plus (l, r) => 1 + height (l).max (height (r))

}

class DepthModule (tree : Tree[Node,Node]) {

def depth : Node => Int =

attr {

case tree.parent (p) => depth (p) + 1

case _ => 0

}

}

Fig. 6. Kiama version of the height and depth attributes.

In contrast to height, depth requires access to the context. In Figure 6,
depth is defined in a class whose constructor takes the tree as an argument.2 In
effect, the class defines a reusable module of attribution. A client of this module
would have to first instantiate the class with the desired tree. The definition of
depth uses the tree to access the parent relationship. In the first equation the
pattern tree.parent (p) will succeed only if the matched node has a single
parent in that tree and it will bind that parent node to the variable p. The vari-
able is used in the right-hand side of the equation depth (p) + 1 to recursively
get the depth of the parent. The second equation will only be reached if the node
has no parent, which means it must the root of the tree.

Instead of defining a module of related attributes using a class, we could
define a family for a single attribute by using a method that takes the tree as an
argument. In our experience this approach is less useful than using a class, since
it is common for many related attributes to need access to the tree. It is easier
to group these attributes in a module and then pass the tree once when the
module instance is created than it is to pass the tree explicitly to many separate
attribute definitions.

Cooperation between different attribute families is achieved in different ways
that depend on how the families are defined. If they are defined in the same
module, then the context is implicitly available to both families, so it need not
be passed. If the families are defined in different modules, then a calling attribute
will need to be given a reference to the module instance that defines the called
attribute. Similarly, a family defined by a method can call a family defined in
a module if it has a reference to the relevant module instance. Finally, if two
families are defined by parameterised methods, then the context will need to be

2 The constructor arguments of a Scala class are given in the class heading and the
body of the class definition is the constructor implementation. Constructor argu-
ments are in scope throughout the class definition.

passed explicitly between them. Which of these situations applies will depend
on the overall structure of an application, so it is hard to be definitive about
the implication of use families. To give some expectations, we report in the
next section on our experiences of converting Kiama’s test suite to use the new
approach.

4.4 Experience

We have converted our extensive Kiama test suite across to the new style of
context-dependent attributes. The suite includes implementations of various lan-
guages including lambda calculus, Prolog and various cut-down versions of Java.

In all cases we have defined attribution modules that collect many related
attributes, following the module pattern of Figure 6. Most of the code has not
increased in size at all since we just converted singleton implementations of at-
tribution modules into classes and now access the context in attribute equations
via the tree’s parent relation instead of via the tree node fields. A small code
size increase is incurred where modules are instantiated since we must create an
instance of the module instead of just accessing a singleton.

The biggest Kiama test is an Oberon-0 compiler that was previously built for
the 2011 LDTA Tool Challenge. This compiler is built from more than twenty
separate traits comprising around 2000 lines of Scala code. The traits are mixed
together to form the artefacts required by the challenge. In the previous version,
the attribution components relied on the parent field of nodes. In the new version
the components are passed the relevant trees and, if they are transformation
components, return new trees. For example, one component performs desugaring
of FOR and CASE statements into WHILE and IF statements, respectively. The
desugarer is given the input tree so it can use attributes that depend on it such
as those supplied by name and type analysis. After the tree has been rewritten it
is returned as a new tree that is then consumed safely by the next transformation
or code generator. Previously, we needed to be careful to erase attributes of the
old tree before the new tree was returned in case some of them were no longer
valid.

Throughout our examples we now make extensive use of relational pattern
matching where we need to check if a nearby node is there, optionally pattern
match on it, and bind it. These patterns replace direct access to the parent via a
tree node. The tree relations are the basis of properties such as isRoot which is
true if the node is the root of the tree. The tree module also supplies operations
that do not depend on the specific tree, but just on the node, such as isLeaf,
firstChild and lastChild.

Nested patterns are particularly useful. For example, the pattern

u @ IdnUse (i1)

succeeds in the Oberon-0 compiler if matched against an identifier use node. It
binds that node to the variable u and the identifier string to i1. The pattern

ProcDecl (IdnDef (i2), _, _, _)

matches procedure declaration nodes and binds the variable i2 to the procedure
identifier. We can nest these two patterns inside a parent pair pattern to help
implement a check that the identifier used at the end of an Oberon-0 procedure
declaration (i1) is the same as the one used in the procedure’s heading (i2).3

case tree.parent.pair (u @ IdnUse (i1),

ProcDecl (IdnDef (i2), _, _, _)) =>

message (u, s"end procedure name $i1 should be $i2",

i1 != i2)

Kiama’s message facility is used here to generate a message if i1 and i2 are not
the same and place the message at the location of the identifier use (node u).

As another example, the following pattern was used in a dataflow example
to see if the current node has both a next sibling (n) and a Block parent.

tree.parent.pair (tree.next (n), _ : Block)

In both of these examples, the explicit use of tree ensures that these context-
dependent matches are performed with respect to the tree that was provided
when these modules were created. We have thereby reduced the risk that we will
accidentally check in the wrong tree.

A secondary benefit of having the tree available in an attribute definition is
that we can directly refer to the root node. A direct reference can be used to
short-cut the usual pattern of attribution where an attribute computed at the
root node has to be transported one step at a time down to where it is needed.

5 Related Work

We focus our discussion on related work that substantially involves attribute
grammars and that incorporates some aspect of tree transformation or rewriting
in combination with attribution.

Incremental attribute evaluation. One approach to dealing with changes
in attributed trees is to recompute attributes where necessary to take changes
into account. A notable early example of incremental attribute evaluation is
Reps’ work to generate language-based editors that were specified using attribute
grammars [9], but there are many later incremental approaches. Recent examples
include work by Saraiva and Swierstra [10] and Bransen et al. [11]. Incremental
evaluation requires some knowledge of attribute dependencies and the detail of
tree changes in order to recalculate only when necessary. Bürger’s RACR library
for Scheme [12] is of particular interest since it incorporates arbitrary tree rewrit-
ing. RACR builds a dynamic attribute dependency graph during evaluation so
it knows which attributes are influenced by rewrites. In contrast, our approach

3 The relatively verbose form tree.parent.pair can be abbreviated by imports and
aliases, but we choose to show the full form to keep the explanation simple.

might cause some unnecessary recalculation of context-dependent attributes in
a rewritten tree, but we do not need to keep track of attribute dependencies
or have any dependence between attribution and rewriting. It is future work to
investigate how our approach can be adapted to share computed values between
different instances of the same attribute family where it is safe to do so.

Object-based attribute grammar systems. Some attribute grammar sys-
tems generate evaluators for object-oriented languages and hence directly share
some of the concerns of Kiama for mutability and shared tree nodes.

JastAdd has pioneered many recent extensions of the basic paradigm in-
cluding reference and circular attributes [4, 13]. It generates evaluators in Java,
including tree node classes that implement the attribute as methods. Each of
these classes contains a mutable parent field, so tree nodes cannot participate
in more than one tree. In addition to its main attribute grammar specification
notations, JastAdd incorporates a form of rewrite rule [14]. It arranges to invoke
these rules as part of the attribute evaluation process. Unfortunately, attributes
of trees that are being rewritten may be recalculated as rewriting proceeds, only
to be finalised when later rewriting cannot affect their values. We believe that
this approach blurs the distinction between an attribute representing a prop-
erty of a node and a mutable variable that may change as execution proceeds.
In our scheme attributes will only ever have one value within a particular tree.
Also, in JastAdd the rewriting approach is intricately embedded in the attribute
evaluation process, whereas attribution and rewriting are independent in our
approach.

Silver is another prominent Java-based attribute grammar system [5]. Sil-
ver distinguishes between trees that have no attribute values and ones that do
(so-called “decorated trees”). Attributes are evaluated by passing them a ref-
erence to the tree context. Thus, in theory it is possible to decorate a node
with respect to more than one tree by passing in a different context. However,
as far as we can tell, Silver does not explicitly deal with node instances that
are shared by two trees. Since attributes are computed lazily and their values
stored, it would appear to be necessary to clear those values if we wanted to
evaluate those attributes in another tree that shared some nodes, as in older
versions of Kiama. Silver supports language extension via a form of higher-order
attribute grammar called forwarding [15]. New tree fragments can be computed
as attribute values that are associated with existing tree nodes and forward some
attribution requests to those nodes. Forwarding, in essence, is a specialised form
of tree transformation by augmentation and is supported directly by the Sil-
ver evaluation approach. In contrast, our approach can support arbitrary tree
transformations that are independent of attribute evaluation.

Functional attribute grammar systems. There is a long tradition of at-
tribute grammar systems based on or in functional programming languages [16].
By and large, these systems do not encounter the same issues with sharing since
in pure value-based functional languages sharing is not observable. Hence, there

is no option to associate attribute information with a node instance since there
is no way to tell that instance apart from another that has the same fields.

We briefly note two functional attribution approaches that have some char-
acteristics in common with our approach. Zippers can be used in functional
languages to keep track of the current location during a generic tree traver-
sal [17]. Martins et al. use generic zippers to embed attribute grammars in a
pure functional language [18]. During evaluation the zipper encodes the path
taken from the root to the node of interest in a similar way to a traditional tree-
walking attribute evaluator. It is non-trivial to start a zipper-based evaluator at
a particular node as we do in our approach, since the context would have to be
manually created. Accordingly zipper-based approaches assume a traversal from
the root.

An alternative to zipper-based approaches for context tracking in functional
languages was developed by Gaillourdet et al. [19]. A cyclic position structure
is created to mirror the structure of the tree upon which attribution is to be
performed. Nodes in the position structure have parent links to give access to
the context of a node. This approach is similar to Kiama’s previous approach in
that it equips each node with a component that gives access to its parent in a
particular tree structure. The functional setting means that quite a bit of work
has to be done to define the form of a position structure based on the tree syntax
and construct one for a particular tree. In contrast, our reference equality-based
setting allows us to use the relationships between the nodes themselves and a
separate mirroring structure is not needed.

Rewriting-based attribution systems. Kats et al. incorporated attribute
grammar features into ASTER which is an extension of the Stratego strategic
programming language [6, 20]. This combination of attribution on a rewriting
base contrasts with Kiama’s approach where attribution and rewriting can co-
operate but are implemented separately. ASTER uses the generic traversal op-
erators of Stratego to implement decorators that abstract patterns of attribute
computation away from a specific tree structure. ASTER’s focus on traversal
from a node of interest is similar to Kiama’s focus on the relationships between
nodes. Reflection on the tree structure is used in ASTER to obtain access to a
node’s context via its parent. This reliance on a single parent reference means
that ASTER cannot express attribution of shared nodes.

Relational representations of programs. Finally, we note that the use of
relations to represent relationships between program components is a well-used
idea. A non-trivial early example is Linton’s OMEGA system which uses a rela-
tional database to store program information [21]. Since the aim of this kind of
work is different from ours we do not consider it further, except to mention the
Rascal language which incorporates high-level support for relations to support
meta-programming [22]. It is possible that Kiama’s new support for relations
can be generalised beyond trees to support this kind of processing.

6 Conclusion and Future Work

We described how attribution and rewriting of trees can get along in an object-
based implementation with reference equality. The key is to design context-
dependent attribution to be parameterised by the tree in which that attribution
is to be performed, thereby defining attribute families. This approach solves the
problem of deciding what attributes mean when nodes are shared between trees
as a result of rewriting.

We have implemented the approach in the Kiama language processing li-
brary and its test suite. Context-dependent attribute definitions were adjusted
to depend on the tree, but no changes were needed in the attribute evaluation im-
plementation so the approach works for all existing kinds of attributes including
reference and circular attributes. The definition and evaluation of attributes is
completely independent of how rewriting is achieved and requires no knowledge
of which rewrites have occurred.

The main area for future work is to further improve reuse of attribute values
in rewritten trees. At the moment we reuse all attributes that do not depend on
the context. However, some context-dependent attribute occurrences will be valid
in a rewritten tree if they do not use the part of the context that has changed. We
are developing techniques to take advantage of this situation without requiring
detailed cooperation between attribution and rewriting. Part of this work will
be a detailed profiling exercise to understand how the evaluation of attributes is
affected by the shift to attribute families.

Acknowledgements

Development of the approach described in this paper benefited greatly from
discussions with our colleague Dominic Verity. We also thank the anonymous
reviewers for their helpful suggestions.

References

1. van den Brand, M.G.J., Klint, P.: ATerms for manipulation and exchange of
structured data: It’s all about sharing. Information and Software Technology 49(1)
(2007) 55–64

2. Sloane, A.M.: Lightweight language processing in Kiama. In: Generative and
Transformational Techniques in Software Engineering III. Volume 6491 of Lecture
Notes in Computer Science. Springer (2011) 408–425

3. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure embedding of attribute grammars.
Science of Computer Programming 78 (2013) 1752–1769

4. Hedin, G., Magnusson, E.: JastAdd: an aspect-oriented compiler construction
system. Science of Computer Programming 47(1) (2003) 37–58

5. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute
grammar system. Science of Computer Programming 75(1+2) (January 2010)
39–54

6. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.16:
components for transformation systems. In: Proceedings of the 2006 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based program manipula-
tion, ACM (2006) 95–99

7. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. 2nd edn. Artima
Press (2010)

8. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns. In: Proceed-
ings of European Conference on Object-Oriented Programming. Volume 4609 of
Lecture Notes in Computer Science. (2007)

9. Reps, T.W.: Generating Language-based Environments. Massachusetts Institute
of Technology, Cambridge, MA, USA (1984)

10. Saraiva, J., Swierstra, D.S., Kuiper, M.F.: Functional incremental attribute evalu-
ation. In: Proceedings of the 9th International Conference on Compiler Construc-
tion, Springer (2000) 279–294

11. Bransen, J., Dijkstra, A., Swierstra, S.D.: Lazy stateless incremental evaluation
machinery for attribute grammars. In: Proceedings of the Workshop on Partial
Evaluation and Program Manipulation, ACM (2014) 145–156

12. Bürger, C.: RACR: A Scheme Library for Reference Attribute Grammar Controlled
Rewriting. Dresden University of Technology, http://racr.googlecode.com. (2014)

13. Magnusson, E., Hedin, G.: Circular reference attributed grammars–their evaluation
and applications. Science of Computer Programming 68(1) (2007) 21–37

14. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Proceed-
ings of the European Conference on Object-Oriented Programming. Volume 3086.
(2004) 147–171

15. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Proceedings of the International
Conference on Compiler Construction. Volume 2304 of Lecture Notes in Computer
Science., Springer (2002) 128–142

16. Johnsson, T.: Attribute grammars as a functional programming paradigm. Lecture
Notes in Computer Science 274 (1987) 154–173

17. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, ACM
(2010) 13–24

18. Martins, P., Fernandes, J., Saraiva, J.: Zipper-based attribute grammars and their
extensions. In Bois, A., Trinder, P., eds.: Programming Languages. Volume 8129
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013) 135–149

19. Gaillourdet, J.M., Michel, P., Poetzsch-Heffter, A., Rauch, N.: A generic functional
representation of sorted trees supporting attribution. In Voronkov, A., Weidenbach,
C., eds.: Programming Logics. Volume 7797 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2013) 72–89

20. Kats, L., Sloane, A.M., Visser, E.: Decorated attribute grammars: Attribute evalu-
ation meets strategic programming. In: Proceedings of the International Conference
on Compiler Construction. Number 5501 in Lecture Notes in Computer Science,
Springer (2009) 142–157

21. Linton, M.A.: Implementing relational views of programs. In: Proceedings of the
Symposium on Practical Software Development Environments, ACM (1984) 132–
140

22. Klint, P., van der Storm, T., Vinju, J.: Easy meta-programming with Rascal. In:
Generative and Transformational Techniques in Software Engineering III. Springer
(2011) 222–289

