Monto: A Disintegrated Development
Environment

Anthony M. Sloane, Matthew Roberts, Scott Buckley, and Shaun Muscat

Department of Computing, Macquarie University

Abstract. Integrated development environments play a central role in
the life of many software developers. Integrating new functionality into
these environments is non-trivial and forms a significant barrier to entry.
We describe our Monto architecture which aims to address this prob-
lem. Monto components communicate via text messages across an off-
the-shelf messaging layer. The architecture imposes limited constraints
which enables easy combination of components to form an environment.
A prototype implementation shows that this approach is practical and
shows promise for full-featured development environments.

1 Introduction

Integrated development environments (IDEs) are an important part of the tool-
kit of many software developers. They provide facilities for editing, interrogating,
transforming, running and debugging source code. Their integrated nature means
that developers can perform all of these tasks without leaving the IDE.

In recent years, impressive progress has made it easier for software language
engineers to extend IDEs. The IDEs themselves provide extension frameworks
that allow new plugins to be combined with existing facilities. Language en-
gineers have integrated their tools into these frameworks to achieve high-level
specification of IDE components.

Despite this progress in bringing language engineering tooling closer to lan-
guage designers and developers, tying that tooling to a particular IDE framework
is a serious limitation. For example, the considerable effort used to develop an
Eclipse plug-in for a new language probably doesn’t provide any support for
other environments. This tie-in also makes it harder for researchers to make new
research results from language engineering accessible to practitioners. For exam-
ple, having great tooling in Eclipse is of no help to developers who write their
code in IntelliJ IDEA, Netbeans or a text editor. Requiring developers to move
to a particular IDE platform is often not practical. Even if researchers can settle
on an IDE they then have to make their tool infrastructure work with that IDE
which may require language changes or other compromises.

An alternative to a highly coupled framework for IDE extension is one that
aims to limit coupling to a bare minimum while still allowing feature integration.
We call this sort of framework a disintegrated development environment (DDE)
to indicate that it comprises parts that are as separate as possible but maintains

the overall goals of IDEs. This paper describes our prototype Monto DDE, its
architecture and our preliminary experiences using it to build IDE-like facilities.
Our goal with the Monto project is to explore a minimalist approach, its design
and practicality; this paper reports our first steps.

We motivate Monto by discussing problems met by tool builders and devel-
opers that arise from a highly integrated approach (§2). We also discuss related
work that environment builders have proposed to solve similar problems and
upon which we build. These considerations led us to a view that a broadcast ar-
chitecture should be used to reduce coupling between components. Communica-
tion should be as simple as possible to minimise overhead and enable components
to be written quickly in any language.

The Monto architecture distinguishes between sources that publish notifica-
tions when changes to user-edited text occur, servers that provide functionality,
and sinks that consume products from servers (§3). A broker mediates between
sources, servers and sinks. All communication between Monto components is text
encoded in JSON messages (§4). The ZeroMQ library [1] is used for fast commu-
nication between components. Using off-the-shelf technology for communication
means that Monto components can be written in a wide variety of languages.

We discuss our experience with a prototype implementation of the Monto
architecture (§5). We have implemented sources and sinks as plug-ins for the
Sublime Text editor [2]. Our experiments show that components can be inte-
grated with little effort using the Monto approach. Use of simple messages and
a fast messaging layer means that interactive performance is good enough for
live update even though many messages and processes are involved.

Our contribution is to show that this approach to building environments is
practical and suffices to implement basic features of more integrated approaches.
Future experiments are needed to explore more advanced functionality.

2 DMotivation and Related Work

Integrated development environments such as Eclipse, IntelliJ IDEA and Net-
Beans provide powerful facilities for program development. However, it is widely
agreed that developing plug-ins for non-trivial new languages in these environ-
ments is not for the faint-hearted. Success stories such as the Java Development
Tools in Eclipse are the product of many years of development by many develop-
ers. Effort on this scale is beyond all but the most well-resourced organisations.

Many researchers have attempted to address the difficulty of adding support
for new languages to IDEs or similar systems. Most notably, the IDE Meta-
tooling Platform (IMP) for Eclipse [3,4] abstracts the Eclipse framework to
make it easier to build language-specific services. The Spoofax/IMP project in-
tegrates the Stratego term rewriting language and related domain-specific lan-
guages into Eclipse [5, 6]. Language designers can easily use Spoofax to develop
custom support for new languages, including syntax highlighting, code folding
and name definition-use navigation. All of these facilities integrate well with the
rest of Eclipse. As the name suggests, Spoofax/IMP is based on an evolution of

IMP rather than on the core Eclipse frameworks. Spoofax is a form of language
workbench which is a category of environment specifically designed to make it
easy to build new language support [7]. There are many other workbenches that
implement different approaches to language specification. For example, the Meta
Programming System (MPS) provides a general editing framework in which new
languages can be specified by defining abstract syntax, projections from that
syntax to text, analyses, code generation, and so on [8].

Text editors are the other main kind of front-end used for software develop-
ment. Similar to IDEs, editors often provide plug-in architectures, but usually
operate at a lower level. For example, most editor extension mechanisms rely
on text-based processing such as regular expression matching to perform syntax
highlighting, in contrast with IDE plug-ins that usually integrate full parsers.
The tendency in editor plug-in frameworks is to make it easy to add extensions,
usually at the cost of having to operate in a reasonably primitive environment.
Some editors support sophisticated extensions that reuse existing infrastruc-
ture. For example, the ENhanced Scala Interaction Mode for Emacs (ENSIME)
project reuses the Scala compiler to provide support for IDE-like features in a
Scala programming mode for Emacs [9].

Much of this work on providing language-support in IDEs, workbenches and
text editors is impressive, but it is based on a fundamental assumption. Devel-
opers of new language tooling are expected to use a specific platform, such as
Eclipse plus Stratego, MPS or Emacs. This assumption means that it is non-
trivial to use this tooling in other settings. For example, there is no easy way for
a developer who prefers the IntelliJ IDEA environment to use Spoofax.

The difficulty of using tooling in different integrated contexts leads to general
component architectures for software tooling. The idea is to develop a framework
in which a variety of tools can cooperate, yet remain somewhat separate. Com-
munication between tools allows them to exchange information. A primary mo-
tivation for our work is the TOOLBUS coordination architecture which is based
on message passing [10]. TooLBUS has been used to develop coordinated tooling
in the language engineering space [11]. Another related approach is embodied in
the Linda coordination language which bases communication between parallel
processes around a shared store of general data tuples [12].

Architectural approaches such as TOOLBUS and Linda are a step in the
right direction since they allow individual separated components to provide func-
tionality while the framework handles the communication between components.
However, they still impose non-trivial integration requirements. For example,
TooOLBUS uses a process algebra-based scripting language to describe how tools
interact. While such a description undoubtedly provides benefits, it does impose
a barrier to entry. Linda requires custom support to access the tuple store.

These considerations led us to wonder whether we could reduce coupling
between components even further while still employing a largely decoupled ap-
proach in the style of TooLBUS and Linda. The novel aspect of our solution is to
disintegrate as much as possible and remove the need for a coordination language
by simplifying the interaction between components. In the Monto architecture

components play simple defined roles and are unaware of the existence of other
components. No overall coordination specification is required. In architectures
like TooLBUS many different kinds of messages are sent between components.
We reduce the number of message types to two. Moreover, we follow the lead of
Unix and Web technology by only sending text messages with a simple structure
to keep coupling low.

3 Monto Architecture

Monto contains sources, servers and

sinks (Figure 1). The components run AW User %’zw
independently either as separate pro- ® ®
cesses or as threads in one or more O\
processes, all of which may be run- Om>
ning on a single machine or on mul- @
tiple machines. Most likely a single
process will interact with the user by
operating as both a source and mul-
tiple sinks, while many servers run as
separate local or remote processes. A
source reacts when text is changed by
a user (step 1). The source publishes a complete version of the changed text
(step 2) which is passed to servers by a broker (step 3).

In this paper we assume that versions are sent in a fine-grained manner so
that each change results in a separate message. A typical source might be a plug-
in for a text editor that is triggered each time the user makes a modification to
a file buffer. To keep things simple in our prototype, the broker passes on every
version to every server. A registration scheme could easily be added to reduce
message traffic but we haven’t found it to be necessary.

Servers react to versions by sending responses that contain products which
are derived from the version text (step 4). A single server may respond to every
version or just to certain ones. For example, a server that knows how to perform
semantic analysis checks for a particular language will only respond versions
written in that language, whereas one that provides information about version
control status will respond to every version that involves a tracked file.

The broker passes the products to the sinks (step 5). Usually a sink will
display some part of the product to the user, possibly inducing some further
user interaction (step 6). As for servers, sinks are often designed to only react to
certain kinds of product. A typical sink might react to a product containing an
outline by showing the outline in a text editor buffer or IDE view. A sink that
knows how to handle text completion might display options from a completion
product so that the user can select one.

The Monto architecture is specifically designed to minimise coupling between
the components. The broker exists so that sources do not need to be aware of the
identity or location of the servers and sinks. Similarly, servers can work without

version

®

Sources

Servers

Fig. 1. Monto architecture overview.

having to be aware of the sinks that consume their products. Sinks do not need
to know anything about the servers that produce the products they receive.

4 Communication

The choice of communication technology directly affects which languages can
be used to implement Monto components and hence indirectly influences which
other technologies can participate. For example, choosing a Java-specific commu-
nication mechanism would mean that JVM-based languages could easily be used
but others would be ruled out. Basing things on Java would mean that Eclipse
and other Java-based IDEs would be able to participate as sources or sinks, but
text editors that are implemented in C could not be easily incorporated.

We use the ZeroM@Q messaging technology [1] to implement communication
in Monto. ZeroMQ is a convenient layer on top of basic socket-level communi-
cation, but otherwise does not impose any constraints on the information that
can be communicated. ZeroMQ-compatible libraries exist for most mainstream
languages, so it is easy for components to interoperate without sharing an imple-
mentation language. ZeroMQ is also very fast since it imposes minimal overhead
above the basic communication layer. Speed is important since messages from
sources to servers to sinks are being used to provide interactive functionality.

Monto sends messages over ZeroMQ sockets as text and the ZeroMQ layer
takes care of issues such breaking large messages into smaller pieces and re-
assembling them at the other end. ZeroMQ also takes care of queueing messages.
Sending a message using ZeroMQ is typically a couple of lines of code. Servers
and sinks use a blocking operation to wait for an incoming message to arrive.

Message formats. The choice of message format strongly affects the sim-
plicity and power of the framework. Using message formats that make few as-
sumptions about the information that is being communicated means that the
framework will not impose too much on the way that it can be used. For exam-
ple, if changes were notified by sending an abstract syntax tree of the version
according to some grammar, we would make it inconvenient to write servers that
wish to process the version as lines of text, perhaps to perform a spell check.

The simplest message format we can use is uninterpreted plain text. How-
ever, it is useful to have slightly more structure so that servers and sinks have
something by which to discriminate between messages. We use the JSON struc-
tured text format. As for ZeroMQ, an advantage of JSON is that encoders and
decoders are available for many languages.

Version messages. Messages that describe a version contain:

— source: a unique string that identifies the source of the version,

— language: the name of the language in which the source is written,

— contents: the complete text of the version, and

— selections: objects that describe the current selected regions in the source.

The source string is usually the name of a file that is backing the content that
is being edited. The contents of a version message do not necessarily correspond
to the current contents of the file since the user may not have saved it.

The language field is used so that servers can react only to text that is
written in a language that they understand. The language “text” is used if no
other language is suitable. Using a string to encode the language is the simplest
method, but introduces some imperfections. For example, who determines which
language names are acceptable in a version message? We could specify the legal
names up-front using some form of enumeration type, but we stick with a string
so that the framework is as flexible as possible. Coordination of language names
must be done by convention outside the framework.

The contents field contains the complete text of the version. One obvious
possibility for modification of this design is to send just the nature of the change
itself. Our view is that this kind of extension would complicate the messaging too
much and would tie the framework too closely to particular kinds of changes.
The price we pay is that servers may be recalculating information that could
have otherwise been determined in a more incremental fashion, or they must
become somewhat stateful. So far we have not found this to be a limitation.

Most sources have some notion of the current selection which describes the
editing position in the text and what, if any, of the text has been highlighted
by the user. The selection field of a version message supports servers that take
the user’s current focus of attention into account. For example, a server that
determines completion possibilities needs to know where the cursor is.

Product messages. Messages that communicate a product contain:

source: the unique identifier of the source to which this product relates,
— product: the type of the product,

language: the language in which the product text is written, and

— contents: the content of the product as text.

The source field is used to associate the product with the source of the version
that triggered it. Sinks can react to products that pertain to a source in which
they are interested. For example, a sink that is waiting for a code completion
product would react to products that apply to the initiating source.

The product field identifies its type and is used by sinks to react only to prod-
ucts that they can handle. For example, a sink that wants to display an outline
view for any source would ignore the source field but check that the product
field indicates an outline. Monto enforces no discipline on product names, so like
language name they must be agreed by convention outside the framework.

The language and contents fields are used similarly to their role in version
messages. Sometimes a server will produce text in a particular language. For
example, if the server is formatting the version text then the product language
will be the same as that of the corresponding source message. If the server is
compiling Java code then the product language might be “JVM byte code”.

Version and product messages can contain extra fields to communicate in-
formation above the basic level mandated by the framework. For example, a
particular source might include information about the change that created a
version, in case that information is of use to a server but would be hard for
the server to calculate itself. Similarly, a server can provide extra information

in a product message for use by sinks. This sort of extra information would be
provided and used by convention between developers of Monto components.

Running Monto. Monto consists of a loose collection of components that
run autonomously. A script simplifies starting and stopping the broker and any
servers that the user desires to use. The script is driven by a simple configuration
file that specifies paths, command-line arguments, etc.

To avoid overwhelming the servers with many small changes to the same
source in a small period of time, the broker collects only the most recent version
message for each source and periodically sends it to the servers. The timing has
been adjusted to balance between sending too many messages to the servers
and not reacting quickly enough for good interactive use. The broker can be
implemented in any language that can communicate using JSON messages over
ZeroMQ. In our prototype it is implemented by about 40 lines of Python but
can easily be implemented in a compiled language if speed becomes a problem.

Other than the broker and servers, the user must also run sources and sinks.
Normally these components will be implemented by plug-ins in an editing envi-
ronment of the user’s choice so they will be automatically started up when that
environment starts or as the result of user commands.

5 Experience

We have been experimenting with the Monto prototype framework to build var-
ious sources, servers and sinks. Our aim so far has been to explore to see if our
simple approach is sufficient to encompass typical IDE-like functionality. We
particularly wanted to see whether an approach that requires sending messages
between components performs well enough to make a usable environment.
Sublime Text. Our current experiments use the Sublime Text 3 editor [2].
We have built a Monto plug-in for Sublime Text in 250 lines of Python. The
plug-in relies on 100 further lines that are independent of Sublime Text and can
be used by any Python-based Monto component. When the plug-in is loaded,
Sublime Text acts as a source for any buffer that the user is editing. A version is
published each time a buffer is created, modified and when a selection is moved.
The plug-in provides a command by which the user can create new views
that display Monto products, which we call Monto views. A Monto view can
optionally display products that relate to all sources or just those for the source
that held the focus when the command was run. Similarly, new arrivals of a
product can be appended to the existing text in a Monto view or replace it.
Figure 2 shows a Sublime Text window editing a factorial program written in
the Java-subset language MiniJava (top left). The user has three Monto views to
display products: the abstract syntax tree of the program (a form of outline, top
right), the abstract syntax tree pretty-printed as MiniJava code (bottom left),
and a translation of into Java Virtual Machine bytecode (bottom right).
The Monto views in Figure 2 are updated continuously as the developer edits
the program. Adding a new local variable declaration in the ComputeFac method
will cause a new node representing that declaration to appear in the tree view, a

®| ~/Desktop/factorial.java

factorial java x factorial.java.tree x

class Fact { v (
public static void main () { v (
System.out.println (new Fac ().ComputeFac (10)); Def (“Factorial"),
} v (
} v LExp (
(("Fac")),
T class Fac { ("ComputeFac"),
public int ComputeFac (int) 1 (IntExp (12))))),
int num_aux; v (
if (num < 1) num_aux = 1; else v (
num_aux = num * (this.ComputeFac (num - 1)); ("Fac"),
return num_aux; ,
} v (
} L

factorial.java.prettytree 3 factorial.java.output x

= class { .source /Users/asloane/Desktop/factorial. java

public static void main () { .class public Factorial
System.out.println (new Fac ().ComputeFac (1f .super java/lang/Object

} .method <init>()V
. limit stack 1
7 class { T .limit locals 1
aload_0
dnvokespecial java/lang/Object/<init=()V
public int ComputeFac (int) return
.end method
int num_aux;
.method public static main([Ljava/lang/String;)V
if (num < 1) .limit stack 3
num_aux = 1; 7 .limit locals 2
;52
Line 14, Column 2 Spaces: 4 Java

Fig. 2. Sublime Text: MiniJava factorial program and three Monto views.

pretty-printed version of that declaration to appear in the pretty-print view, and
the bytecode to be updated to reflect that a new local variable slot is needed.

All of these updates happen nearly instantaneously so the overhead of in-
terpreting messages and reacting to them appears to be low. This observation
confirms that at least for basic functionality the performance of a Monto-based
environment is sufficient for interactive use. We have not conducted a compre-
hensive benchmark against other alternatives and we make no claim about how
more advanced features will perform since those features are part of future work.

The plug-in provides other ways in which Monto products can be used. For
example, a product containing formatted source code might replace the current
selection. A product can also be used by a code completion command as sugges-
tions in a pop-up menu. In fact, since a product is just text, the only limitation
on the way it can be used is the capability of the editor.

Any other extensible text editor or IDE could play the role that Sublime Text
does in our experiments. All that is required is a way to detect when the user
has made changes to the text that they are editing, a way to send a ZeroMQ
message containing that version, and a way to react to products coming in from
servers. If an editor can be extended in Python it can reuse the Monto library
used by the Sublime Text plug-in. Otherwise, similar functionality would need
to be implemented in that editor’s extension language.

There is no requirement that a single program act as both the source and sink
as Sublime Text does. For example, products that result from changes happening
in one editor can be displayed in another one. A fan-out structure could be
used to send products to more than one viewer, so that multiple developers can
observe editing as it happens during a pair coding session. A server that simply
reflects versions back out as products would enable live observation of editing,
but observing developers could also create other views as needed. For example, a

server that automatically runs tests on changed code could report to developers
who are running a test result display sink.

MiniJava compiler server. One typical use of a DDE is to interface with
existing compiler code. Rather than duplicate the compiler code within the en-
vironment, we wish to reuse it. In fact, the products shown in Figure 2 were
produced using a server that is a small extension of existing Scala code for a
MiniJava compiler. The compiler is written using our Kiama language process-
ing library [13,14]. 90 lines of Scala wraps any Kiama compiler so that it acts
as a Monto server; no modifications must be made to the compiler code. The
wrapping code uses off-the-shelf Java libraries for JSON encoding and ZeroMQ.

If a syntax error is introduced in the MiniJava source then the products
shown in Figure 2 will be empty since those products are not defined when the
version text doesn’t parse. The MiniJava compiler also has an error product
that reports any syntax or semantic errors from the compilation process. Thus,
if desired, a developer can augment the shown views with one that continuously
updates with the current compiler error messages.

Wrapping text-based tools. Many command-line tools exist that would
be of use in a development environment but were developed independently with
their own user interface. For example, there are many lint tools that produce a
textual report of code quality problems beyond those diagnosed by compilers. We
have built a wrapper script to enable these sorts of tools to be used with other
Monto components. The script runs as a server that executes a shell command
each time a version is received, captures the output of the command, and sends
it back as a product. It is easy to use this wrapper to incorporate the output of
those tools in a Monto view so that, for example, lint reports can be viewed in
the editor and are updated automatically as code changes.

6 Conclusion and Future Work

Our initial experiments have shown that a minimalist disintegrated develop-
ment environment approach has some promise. With a relatively small amount
of effort we were able to build a simple framework that provides an editing expe-
rience with quick feedback to source code changes. By factoring the framework
into independent components that communicate via simple messages, we do not
require component developers to buy into a complex framework. Having said
that, we do not claim on this evidence that a Monto-based environment can
rival well-established IDEs with complex plug-ins.

Current work is investigating more advanced facilities, how they fit into a
disintegrated world and whether our simple framework is sufficient to support
them with acceptable performance. Of particular interest is the ability of Monto
to incorporate servers that reside across the network, perhaps to provide access
to functionality that is impossible or hard to install on a local machine. Some
other areas of current investigation are: source mapping to relate product text
to version text; incorporation of a project view so that servers can work at the
project level not just at the file level; products that are HTML or SVG and

sinks that are web browsers; sinks that display graphical output; build feed-
back; execution-based products for live coding, debugging and testing; wrapping
version control tools; and read-eval-print-loop-based servers.

Acknowledgements. Stépsan Sindela provided useful feedback on the pa-

per. We also thank the anonymous reviewers for their helpful suggestions.

References

1.
2.
3.

10.

11.

12.

13.

14.

Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly (2013)
Skinner, J.: Sublime Text 3. http://www.sublimetext.com/3

Charles, P., Fuhrer, R.M., Sutton, Jr., S.M.: IMP: A meta-tooling platform for
creating language-specific IDEs in Eclipse. In: Proceedings of Conference on Au-
tomated Software Engineering, ACM (2007) 485-488

Charles, P., Fuhrer, R.M., Sutton, Jr., S.M., Duesterwald, E., Vinju, J.: Accelerat-
ing the creation of customized, language-specific IDEs in Eclipse. In: Proceedings
of Conference on Object Oriented Programming Systems Languages and Applica-
tions, ACM (2009) 191-206

Kats, L.C.L., Kalleberg, K.T., Visser, E.: Domain-specific languages for compos-
able editor plugins. In: Proceedings of the Workshop on Language Descriptions,
Tools, and Applications. Volume 253 of Electronic Notes in Theoretical Computer
Science., Elsevier (April 2009) 149-163

Kats, L.C., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Proceedings of Conference on Object
Oriented Programming Systems Languages and Applications, ACM (2010) 444—
463

Erdweg, S., Storm, T., Volter, M., Boersma, M., Bosman, R., Cook, W., Gerrit-
sen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D., Molina, P., Palatnik, M.,
Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E., Vlist,
K., Wachsmuth, G.H., Woning, J.: The state of the art in language workbenches.
In: Software Language Engineering. Volume 8225 of Lecture Notes in Computer
Science. Springer (2013) 197217

Voelter, M.: Embedded software development with projectional language work-
benches. In: Model Driven Engineering Languages and Systems. Volume 6395 of
Lecture Notes in Computer Science. Springer (2010) 32-46

. Cannon, A.: Enhanced Scala Interaction Mode for Emacs (ENSIME).

https://github.com/ensime/ensime-src

Bergstra, J., Klint, P.: The discrete time ToolBus—a software coordination archi-
tecture. Science of Computer Programming 31(23) (1998) 205-229

van den Brand, M.G.J., van Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers,
T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser, E., Visser,
J.: The ASF4+SDF Meta-Environment: a component-based language development
environment. In: Proceedings of Conference on Compiler Construction. Volume
2027 of Lecture Notes in Computer Science., Springer (2001) 365-370

Ahuja, S., Carrier, N., Gelernter, D.: Linda and friends. Computer 19(8) (1986)
26-34

Sloane, A.M.: Lightweight language processing in Kiama. In: Generative and
Transformational Techniques in Software Engineering III. Volume 6491 of Lecture
Notes in Computer Science. Springer (2011) 408425

Programming Languages Research Group, Macquarie University: The Kiama lan-
guage processing library. http://kiama.googlecode.com

