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Abstract
The similarities and differences between attribute grammar
systems are obscured by their implementations. A formal-
ism that captures the essence of such systems would allow
for equivalence, correctness, and other analyses to be for-
mally framed and proven. We present Saiga, a core language
and small-step operational semantics that precisely captures
the fundamental concepts of the specification and execution
of parameterised reference attribute grammars. We demon-
strate the utility of Saiga by a) proving a meta-theoretic
property about attribute caching, and b) by specifying two
attribute grammars for a realistic name analysis problem and
proving that they are equivalent. The language, semantics
and associated tests have been mechanised in Coq; we are
currently mechanising the proofs.

CCS Concepts • Software and its engineering → Se-
mantics;

Keywords attribute grammars, small-step operational se-
mantics, name analysis
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1 Introduction
Attribute grammars are awell-studied specification approach
for tree-based analysis, particularly for static analysis of pro-
gramming languages. Modern attribute grammar systems
share many concepts but unfortunately system specifics ob-
scure the essence of these concepts. For example, JastAdd [2],
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LRC [12], Kiama [14] and Silver [15] each implement a form
of reference attribute grammars. However, these systems
use different approaches to implement tree traversal and to
allow attribute values to reference tree nodes.
If we wish to study attribute grammars from a formal

standpoint, choosing any one system as the basis of that
study risks confusing the essence of the concept with im-
plementation detail. For example, we might be interested
in meta-theoretic properties such as the behaviour of an
attribute caching scheme. Or we might want to analyse par-
ticular attribute grammars, perhaps to discuss their efficiency
or to compare them.

In each of these cases we are hampered if we choose a par-
ticular implementation that will introduce many details that
are not relevant to the analysis at hand. For example, when
considering the effect of caching on a computation it is not
necessary to know exactly how that caching is implemented.
When studying efficiency or comparing attribute grammars
we don’t want to compare actual run-times or low-level
events that occur during execution of an implementation.
Rather we want to study occurrences of domain-level events
such as the evaluation of an attribute or the placement of
a value in a cache, since their study reveals more generally
applicable results.
A standard approach for this kind of situation is to de-

fine a core language that captures the concepts of interest.
Type systems and operational semantics for the core lan-
guage enable its properties to be studied independently of
implementation complications.
In this paper we present Saiga, a core language that cap-

tures the main concepts of modern attribute grammar eval-
uation. Specifically, Saiga defines parameterised, reference
attribute grammars and they are evaluated using dynamic
scheduling and optional attribute caching. Section 2 presents
the language and illustrates its use by way of a simple exam-
ple inspired by name analysis.

Section 3 formalises the meaning of Saiga by way of a type
system that defines well-formed programs and a small-step
operational semantics that gives meaning to those programs.
The full formalisation is reached in three stages: a base level
that contains simple (reference) attributes and no caching,
the addition of parameterised attributes, and the addition of
caching.
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Section 4 explores meta-theoretic properties of Saiga’s
formalisation. We begin with basic properties: determinism,
strong progress and type preservation. Then we argue that the
important property of cache irrelevance holds; i.e., that the
presence or absence of caching does not affect the values
computed for attributes. We also argue that cached-based
evaluation performs no more work than an evaluation that
doesn’t use caching.

Section 5 demonstrates that Saiga is expressive enough to
model real-world uses of attribute grammars in language en-
gineering and that we can reason about these attribute gram-
mars. We compare two attribute grammar specifications of
name analysis for PicoJava, a cut-down Java containing only
constructs that are relevant for name analysis. Our analysis
proves that the specifications are equivalent in the sense that
for any PicoJava program they compute the same defining
identifier occurrence for each applied identifier occurrence.

Overall, our formalisation of attribute grammars meets the
goal of allowing formal properties to be discussed and proven
independently of the particular implementation choices of
any attribute grammar system. The language, semantics and
tests have beenmechanised using the Coq proof assistant and
the mechanisation can be found in the following repository:

https://bitbucket.org/scottbuckley/saigacoq

Related work: Knuth introduced attribute grammars via
an abstract process of evaluating attribute equations “until
no more attribute values can be defined” [7]. Since then, at-
tribute grammar evaluation has often been described by a
translation to an evaluator implementation written in an-
other language. Conditions are often imposed on attribute
equations to facilitate a feasible translation, such as reject-
ing circularly-defined equations. Researchers have defined
translations to efficient evaluators. For example, Kastens de-
fined the class of ordered attribute grammars for which it
is possible to derive a tree-walking evaluator that works
for any syntactically-correct tree without having to make
any scheduling decisions at run-time [6]. Johnsson described
how evaluation can be achieved easily in a lazy functional
language [4]. Jourdan described a translation to recursive
functions that eschews static checks, schedules dynamically
and detects circularity at run-time [5].

These approaches and many others like them rely on eval-
uation of another language. Thus, formal reasoning about
evaluation of an attribute grammar requires formal reasoning
about that other language. For example, to understand the
meaning or behaviour of a tree-walk evaluator derived from
an ordered attribute grammar, we need a model of the tree-
walking process. But this process necessarily contains details
specific to that implementation approach, thereby compli-
cating comparison with other approaches. The essence of
the attribute grammar has been obscured by the tree walker.
We get into similar difficulties when we consider more

modern attribute grammar features. To pick just one example

from many, the description of reference attribute grammars
by Hedin includes both a direct object-oriented implementa-
tion as well as a translation to non-reference attribute gram-
mar constructs [3]. Neither of these is particularly useful for
studying reference attributes from first principles since both
translations lose sight of the fact that reference attributes
are not really that different from non-reference attributes.
De Moor et al. showed how to define compositional at-

tribute grammars in Haskell using an aspect-oriented ap-
proach [9, 10]. This paper is a successor to the earlier work
on implementing attribute grammars as functional programs
mentioned above and relies crucially on laziness. Similarly,
Backhouse defined a Haskell-based implementation of at-
tribute grammars that is used to reason in “a calculational
style” and to derive a new test for definedness [1]. Schäfer
et al. implemented circular, reference attribute grammars
as a shallow embedding in Coq [13]. They used zippers to
keep track of locations in trees (an approach that has been
explored further by others [8]). They are able to prove prop-
erties of non-trivial attribute grammars, but overall the result
is similar to implementing attribute grammars in a general-
purpose functional language.
These shallow embedding approaches in functional lan-

guages are very powerful, particularly when we consider
how to write attribute grammars concisely using compo-
nents and how to reason about them equationally. However,
the essence of attribute evaluation is quite obscured since
we are very quickly transported to the level of Haskell, Coq,
or similar.
Our aim is to examine the essence of attribute evalua-

tion, which we achieve by defining a new core language that
abstracts away from other details such as high-level specifi-
cation notations. We define the core language’s semantics
directly by inference rules and bymechanising those rules via
a deep embedding in Coq. The result is a small-step version
of Jourdan’s dynamically scheduled evaluation approach [5]
which is used by modern attribute grammar systems and
libraries, including JastAdd [2], Kiama [14] and Silver [15].

The semantics utilises an underlying mechanism to evalu-
ate functions on attribute values but this evaluation is stan-
dard and lies outside the rules that define how attribute
evaluation proceeds, how results are cached, and so on. This
separation means that we can reason about the evaluation
aspects that matter while keeping the semantics simple by
deferring unrelated details to the functional layer.

We shift questions of attribute grammar specification to a
general “context” function that allows us to abstract away
the differences between specification approaches, thereby
unifying attribute definitions, tree structure and caching. In
contrast to standard treatments of attribute grammar eval-
uation, our approach unifies evaluation of synthesised and
inherited attributeswhile easily handling reference attributes
and parameterised attributes.
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Figure 1. A tree with integer leaves and binary interior
nodes. Node four is the tree’s minimum leaf.

e ::= v value
| IF e1 THEN e2 ELSE e3 conditional
| e1(e2) function apply
| e.a attribute value

Figure 2. Abstract syntax of the Saiga language.

2 A Core Attribute Grammar Language
Consider trees that contain integer leaves and binary interior
nodes such as in Figure 1. Suppose we wish to identify a
minimum leaf (a leaf that contains the minimum value of
any leaf in the tree) and to communicate a reference to that
minimum leaf to each leaf. In the example, the minimum leaf
is node four. This problem is similar to the name analysis
problem for programming languages where the sought-after
nodes represent defining occurrences of identifiers and the
destinations represent applied occurrences. We discuss a
fuller version of name analysis in Section 5.

We can decompose this problem into two sub-problems: 1)
identify the minimum leaf in a sub-tree rooted at a particular
node, and 2) communicate the minimum leaf of the whole
tree to each leaf.
Problem 1 has two cases: a) if the sub-tree root is a leaf

then the minimum leaf is that leaf node, and b) otherwise,
the node is a binary interior node and we pick the minimum
leaf of the children that has the smaller leaf value. If two
children have the same minimum leaf value we arbitrarily
choose the left child’s minimum leaf. In attribute grammar
terms, Problem 1 can be solved with a single synthesised
reference attribute that propagates the appropriate minimum
leaf reference up the tree making choices at each binary node.

Problem 2 is a simple propagation of the minimum leaf of
the root of the tree down to each leaf. This computation can
be achieved using a single inherited attribute.

2.1 Core Language Expressions
Attribute grammar computation notations differ consider-
ably from system to system. We use a simple expression
language to abstract from those details (Figure 2). Com-
putations can be a basic value (v), a conditional expres-
sion (IF e1 THEN e2 ELSE e3), an application of a function

(e1(e2)), or a use of an attribute value (e.a). In Section 3 a
type system will ensure that expressions make sense. For
example, in an attribute value e.a the expression e must
evaluate to a node reference. For now we assume type cor-
rectness.
The expression forms are designed to capture necessary

basic computational elements but not to over-specify them.
Conditionals are included so that a computation can elect not
to evaluate some sub-expression (i.e., conditionals are the
only lazily-evaluated construct). Basic values include func-
tions for use in application expressions. The exact choice of
basic values and functions over those values is left unspeci-
fied since it will depend on the particular problem and does
not affect how attributes are evaluated.

2.2 The Context
Attribute grammar systems have widely varying notations
for specifying the attribute computation to perform to cal-
culate the value of a particular attribute occurrence. Some
systems associate attribute equations with grammar symbols,
others with grammar productions, and some use a mixture.
Higher-level notations include reusable equation modules,
inheritance of equations and forwarding specifications.
In our formalism we abstract away from the details of

these different specification approaches using a single context
function with the following type:

σ : Nodes × Attributes → Expressions

σ (n,a) is the expression to use to compute the value of at-
tribute a of node n. (An extension is necessary to accommo-
date parameterised attributes; see Section 3.3. Caching can
be accommodated by updating the context; see Section 3.4.)
The context abstraction also encodes the tree structure.

That is, it naturally accommodates what we will call intrin-
sic attributes whose values are available directly from the
tree, as opposed to extrinsic attributes whose values are de-
termined via evaluation. We assume that for each intrinsic
attribute the context returns an expression that is the in-
trinsic attribute value. Inter-node links such as between a
node and its children or between a node and its parent are
intrinsic attributes of node type.

2.3 Problem Solution
The problem described at the beginning of this section relies
on the following intrinsic attributes:

• if n is a leaf node, n.value: an intrinsic attribute whose
value is the integer stored in n,

• if n is a binary node, n.childl and n.childr : references
to the left and right child of n, respectively, and

• n.parent: a reference to the parent node of n, or null
if no parent exists.1

1We should probably use an option type here but we omit this improvement
to keep the presentation simple.
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We assume that the context defines values for all intrinsic
attributes.
We can solve the problem by defining the following at-

tributes for all nodes n:

• n.minleaf : a reference to the minimum leaf node in
the sub-tree rooted at n,

• n.treeminleaf : a reference to the minimum leaf node
in the whole tree.

Defining these attributes amounts to specifying the expres-
sions to be returned by the context function σ (Figure 3). In
the leaf case minleaf simply returns the leaf itself. In the bi-
nary case it compares the values of the minimum leaf nodes
of the children and chooses the leaf that has the smaller value.
The function le is the standard less-than or equal function
on numbers.

The definition of treeminleaf copies the treeminleaf value
from the parent if there is a parent, otherwise it is at the root
node so it uses the minleaf of the root. The parent test uses
reference equality equal.

A key aspect of this formalisation approach is the distinc-
tion between the choice of expression to use as the definition
for an attribute occurrence and the choices that attribute defi-
nitions themselves make. The former are part of the attribute
grammar specification as modelled by the context and are
exemplified in Figure 3 by the choice between equations (1)
and (2) for minleaf . The latter are part of the computation
carried out by the attribute grammar and are exemplified by
the conditional expressions in equations (2) and (3).

2.4 Evaluation
Section 3 formally defines how to carry out an attribute
computation defined using our approach. For now we sketch
how evaluation works for our example.

Evaluation is triggered by a demand for the value of some
attribute at some node. A typical example might be the need
for type information about an applied identifier occurrence
as the user’s mouse hovers over it in an editor. Thus, we
begin evaluation via an attribute of the form n.a. For the
sake of the example we choose the treeminleaf attribute of
node two in Figure 1. Throughout we denote node i by ni ,
so our starting expression is n2.treeminleaf .
Evaluation begins as follows where equation numbers

refer to Figure 3.

n2.treeminleaf (3)
−→∗ n2.parent.treeminleaf
−→∗ n1.treeminleaf (3)
−→∗ n1.minleaf

At this point we have reduced the original problem to one
of determining the minimum leaf node for the root of the
tree. Evaluation now proceeds downward using equation (2)
until leaves are reached where we use equation (1). At each
binary node we calculate the value of each child’s minimum

leaf and compare them. For example, to evaluate n1.minleaf
we need

n1.childl.minleaf .value
−→∗ n2.minleaf .value (1)
−→∗ n2.value
−→∗ 2

A similar computation of n1.childr.minleaf .value calcu-
lates n1.childr.minleaf to be n4. Then n4.value is 1, so rule
(2) at n1 chooses n1.childr.minleaf . Therefore the value of
the attribute n1.minleaf is n4. The first sequence of evalu-
ation steps above means that the attributes n1.treeminleaf
and n2.treeminleaf also have value n4.
It is clear from this computation that caching attribute

values can be useful. For example, there is no need for the
computation of a node’s treeminleaf attribute to always go
all the way to the root of the tree via rule (3). It need only
go up until it finds a treeminleaf that has already been com-
puted. Thus, n4 and n5 can share n3.treeminleaf .

3 Formalisation
In this section we make the notions from Section 2 precise.
First, we define the type structure for attribute grammar
expressions and the context. Then in three stages we define
a small-step semantics for expression evaluation: first just
for basic reference attributes, then adding parameterised
attributes and then adding attribute value caching.

3.1 Types
Figure 4 summarises the meta-variables and syntactic cat-
egories of the Saiga language and its formalisation. Saiga
expressions evaluate to values from any set of basic typesT
that includes at least the Boolean type, the types of functions
between basic types, and the special type N that categorises
tree node references.
A categorises attributes and τ gives the declared types of

attributes. We assume a single global τ that is defined for all
attributes. Attributes can be considered labels for data that
is associated with nodes.

We use only one type of attribute because there is no need
to distinguish between them for the purposes of evaluation
using our semantics. For example, as we will see, intrinsic
and extrinsic attributes only differ in the form that their def-
inition takes: either a precomputed value or an expression
that might require some further evaluation, respectively. Sim-
ilarly, from the perspective of our evaluation scheme there is
no difference between synthesised and inherited attributes.
The same evaluation approach works for each kind. Indeed,
a single attribute may have both aspects of synthesised eval-
uation (from below) and of inherited evaluation (from above)
without causing a problem. Mapping attributes from any
particular user-level attribute grammar language down to
these more fundamental mechanisms is outside the scope of
this paper.
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σ (n,minleaf ) if n is a leaf node = n (1)
if n is a binary node = IF le(n.childl.minleaf .value)(n.childr.minleaf .value) (2)

THEN n.childl.minleaf
ELSE n.childr.minleaf

σ (n, treeminleaf ) = IF equal(n.parent)(null) (3)
THEN n.minleaf
ELSE n.parent.treeminleaf

Figure 3. Definitions of σ (n,minleaf ) and σ (n, treeminleaf ). le is the less-than or equal to operation on integers and equal is
reference equality.

Further, we model tree structures in a generic way via
intrinsic attributes, so no particular structure is assumed by
the formalism. When a particular attribute grammar needs
attributes that define the shape of a tree (such as the children
and parent(s) of each node) they are just assumed intrinsic
attributes. Thus, an operation such as accessing the children
of a node is evaluated in the same way as accessing any other
attribute of that node.
Contexts are the key abstractions that hold information

about the structure, attribute values, and attribute equations.
Formally, the context is a total map from nodes and attributes
to expressions. Using a total map allows us to elide another
aspect of attribute grammar specification: whether an at-
tribute has a definition or not (which includes whether an
intrinsic attribute has a value or not). In other words, we
are assuming that completeness and well-definedness issues
have been resolved before evaluation is attempted. We also
assume that the initial context σ is correctly typed:

τ (a) = t =⇒ ∀n ∈ N .σ (n,a) ∈ t

Expression e ∈ E
Type t ∈ T
Node n ∈ N

Attribute a ∈ A
Attribute type τ ∈ A → T

Context σ ∈ N ×A → E

Figure 4. The meta-variables and syntactic categories of the
Saiga language formalisation.

true ∈ Bool false ∈ Bool

e1 ∈ Bool e2 ∈ T e3 ∈ T
IF e1 THEN e2 ELSE e3 ∈ T

e1 ∈ T1 → T2 e2 ∈ T1
e1(e2) ∈ T2

e ∈ N
e.a ∈ τ (a)

Figure 5. Saiga’s core type inference rules.

σ ⊢ e1 −→ σ ′ ⊢ e ′1
σ ⊢ IF e1 THEN e2 ELSE e3 −→
σ ′ ⊢ IF e ′1 THEN e2 ELSE e3

(CondLeft)

σ ⊢ IF true THEN e1 ELSE e2 −→ σ ⊢ e1
(CondTrue)

σ ⊢ IF f alse THEN e1 ELSE e2 −→ σ ⊢ e2
(CondFalse)

σ ⊢ e1 −→ σ ′ ⊢ e ′1
σ ⊢ e1(e2) −→ σ ′ ⊢ e ′1(e2)

(AppLeft)

σ ⊢ e −→ σ ′ ⊢ e ′

σ ⊢ v(e) −→ σ ′ ⊢ v(e ′)
(AppRight)

σ ⊢ v1(v2) −→ σ ⊢ v1 v2
(AppApp)

σ ⊢ e −→ σ ′ ⊢ e ′

σ ⊢ e.a −→ σ ′ ⊢ e ′.a
(AttrLeft)

σ (n,a) = e
σ ⊢ n.a −→ σ ⊢ e (AttrApp)

Figure 6. Saiga’s basic small-step operational semantics.

Saiga’s core type inference rules are shown in Figure 5 and
are standard except for the typing of attribute value expres-
sions that simply uses τ to obtain the declared type of the
attribute. To obtain a complete type inference definition, the
rules in Figure 5 must be augmented by rules for other basic
types and operations on those types. We leave these rules
unspecified since they don’t influence attribute evaluation.
We also refrain from naming the type rules since we do not
refer to them explicitly in the following.
In the following we assume that an expression e submit-

ted for evaluation is well-typed in the sense that the type
inference rules are able to infer a unique type for e .

3.2 Basic Attribute Grammars
Figure 6 shows Saiga’s basic small-step semantic rules that
define the judgement σ ⊢ e −→ σ ′ ⊢ e ′ which means that
when expression e is evaluated in context σ it steps to the
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expression e ′ and the new context σ ′. (At this stage, σ ′ will
always be the same as σ . We make use of context update to
model caching semantics in Section 3.4.)
The first six rules are mostly standard and specify evalu-

ation of conditional expressions and function calls. Condi-
tional expressions have their condition stepped to a value
(CondLeft) and then the expression is replaced by the appro-
priate left or right branch expression (CondTrue or Cond-
False). Applications have their function expression (AppLeft)
and then argument expression (AppRight) stepped to val-
ues (thus evaluation is strict) and then the whole expression
is replaced by the result of calling the function (AppApp).
The latter call (v1 v2) takes place in the underlying func-
tional layer and can’t refer to attributes, thus its evaluation
mechanism is assumed.
Attribute value expressions have their node expression

stepped to a node value (AttrLeft). When this value n is
reached, the expression is replaced by the definition of a at
n, in other words, by σ (n,a) (AttrApp). The rule does not
care what kind of expression is returned by the context, but
usually an intrinsic attribute would return a value, while
extrinsic attributes would usually return more complex ex-
pressions that need to be evaluated further.
It is important to note that no special mechanisms are

needed to support reference attributes (i.e., attributes whose
values are of node type). The rules for “normal” attributes
suffice to evaluate reference attributes. Also, we do not have
a guarantee that evaluation terminates, since an attribute
occurrence may depend on itself. Future work will extend
the semantics to detect attribution cycles and fail gracefully.

3.3 Parameterised Attributes
An attribute with a parameter can be modelled in Saiga by
having an attribute that returns a function value and then
applying the attribute value to the parameter. However, this
approach does not lend itself to caching since function ap-
plication happens outside the world of attributes. So we also
model proper parameterised attributes as a core feature. See
Section 5 for an extended example that uses parameterised
attributes to perform name analysis.
Figure 7 shows the modified expression syntax that re-

places the attribute value form e.a from Figure 2 with a
parameterised version e1.a(e2). An expression of the form
e1.a(e2) passes the value of e2 to the attribute a defined at
the node given by e1. We define only single parameter at-
tributes for simplicity; multiple parameters can be accommo-
dated by using tuple values. To recover non-parameterised
attributes, we assume a unit type and pass the unit value
unit to the attribute if the parameter is irrelevant. The old
notation n.a is then syntactic sugar for n.a(unit).
In this new scheme, the context gains an argument to

specify the parameter value and we add a global function ρ

e ::= v value
| IF e1 THEN e2 ELSE e3 conditional
| e1(e2) function apply
| e1.a(e2) attribute value

Figure 7. Expression abstract syntax using parameterised
attributes.

e1 ∈ N e2 ∈ ρ(a)

e1.a(e2) ∈ τ (a)

σ ⊢ e1 −→ σ ′ ⊢ e ′1
σ ⊢ e1.a(e2) −→ σ ′ ⊢ e ′1.a(e2)

(AttrLeft)

σ ⊢ e −→ σ ′ ⊢ e ′

σ ⊢ n.a(e) −→ σ ′ ⊢ n.a(e ′)
(AttrRight)

σ (n,a,v) = e

σ ⊢ n.a(v) −→ σ ⊢ e
(AttrApp)

Figure 8. The new rules to type and evaluate parameterised
attribute value expressions.

that gives the parameter types for attributes. Thus, we have
ρ ∈ A → T

and the context now has the following dependent type:
σ ∈ N × (a : A) × ρ(a) → E

A correctly-typed context now obeys
τ (a) = t =⇒ ∀n ∈ N ,v ∈ ρ(a).σ (n,a,v) ∈ t

Figure 8 gives the new versions of the type inference and
step rules for attribute value expressions. Typing an attribute
value expression now also checks the type of the parameter.
Evaluation now steps the node expression (AttrLeft), then the
parameter expression (AttrRight). When both are values, the
context is used to obtain the attribute definition (AttrApp).

3.4 Attribute Caching
Many attribute grammar systems support attribute caching,
so that attribute occurrences do not need to be evaluated
more than once. Up until now, the context in our formalism
has been passed unchanged from step to step. Nowwe update
the context whenever we determine the value of an attribute
occurrence. The effect is that subsequent uses of the same
attribute occurrence will receive that value instead of the
expression from which that value was derived.

We introduce a new syntactic construct, shown in Figure 9,
that remembers the “source” of an expression, so that when
we determine the final value of the expression we know
under which attribute occurrence to cache it. An expression
of the form n.a(v) := e means that we are evaluating e and
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e ::= ... Figure 7
| n.a(v) := e caching

Figure 9. Extension to the expression abstract syntax for
attribute caching.

e ∈ τ (a) v ∈ ρ(a)

n.a(v) := e ∈ τ (a)

σ (n,a,v) = e

σ ⊢ n.a(v) −→ σ ⊢ n.a(v) := e
(AttrApp)

σ ⊢ e −→ σ ′ ⊢ e ′

σ ⊢ n.a(v) := e −→ σ ′ ⊢ n.a(v) := e ′
(CacheLeft)

σ ′ = σ ⊕ {(n,a,v1) 7→ v2}

σ ⊢ n.a(v1) := v2 −→ σ ′ ⊢ v2
(CacheWrite)

Figure 10. New operational and type inference rules for
attribute caching.

when we have the final value it should be cached as the value
of the attribute occurrence n.a(v).

The new and modified type inference and semantic rules
that achieve caching are shown in Figure 10. A cache ex-
pression of the form n.a(v) := e is well-typed at τ (a) if
e is and v ∈ ρ(a). The new AttrApp rule shows that now
when an attribute definition is extracted from the context
function, we get a cache expression containing the definition,
not just the definition itself. The rest of the cache expression
remembers the attribute occurrence. The expression in a
cache construct is stepped as usual until a value is obtained
(CacheLeft). When a value is obtained, the context is updated
to record the final value of the occurrence (CacheWrite). (We
use ⊕ to denote a point update of a context function.)
CacheWrite is the only semantic rule that modifies the

context function, and it ensures that a context function will
return a non-value expression only once for any given set
of parameters, thereafter returning the value that the first
expression was resolved into. Since the value v1 is used as
part of the context argument, parameterised attributes are
cached per parameter which is the expected behaviour in
systems such as JastAdd [2] and Kiama [14]. If v1 = unit
then we recover the one-cache-per-attribute behaviour of
caching for non-parameterised attributes.
This expression of the caching mechanism demonstrates

the usefulness of the context function mechanism. Our se-
mantic rules are not concerned with how the context func-
tion remembers what has been cached andwhat has not; they
just retrieve expressions, and sometimes tell the context to
override some expressions for the future.

3.5 Mechanisation
We mechanised the Saiga language and semantics in Coq
using standard techniques [11]. The expression grammar is
defined as a dependent inductive type. The small-step se-
mantics is defined as an inductive relation between pairs of
context functions and typed expressions. Instead of defining
type inference for expressions as a relation, we incorporate
types as expression parameters, so they are typed by con-
struction. In other words, E is parameterised by some t ∈ T .
For example, true is an expression of type E(Bool). Using
dependent types for expressions means that the context can
also be typed more precisely as:

σ ∈ N × (a : A) × ρ(a) → E(τ (a))

and it is therefore not possible for the context to return an
expression that is inappropriate for the attribute a. Similarly,
when values are added to the context they must be of the
appropriate type.
The mechanisation contains cached and parameterised

attributes as described above. Unlike the semantics shown
in this paper, we also include options to enable or disable
caching on a global or per-attribute basis. We found that
proving lemmas about particular programs or the system
itself is easier with caching disabled, and we wanted to have
per-attribute caching control so we can analyse the perfor-
mance implications of caching in a granular way.

4 Meta-theoretic Properties
One of our key goals in developing a formalisation for at-
tribute grammar evaluation was to be able to prove proper-
ties about programs of that system and also prove properties
about the system itself. Section 5 considers some specific
attribute grammars. In this section we discuss important
general properties that have been mechanically proven and
some more interesting properties that have not been. For the
latter, we provide a high-level outline of how they might be
proven.

4.1 General Properties
First, general properties that have all been mechanised in
our Coq development. Determinism states that any context,
expression pair steps to at most one other context, expression
pair.

Theorem 4.1 (Determinism).

∀σ ,σ ′
1,σ

′
2, e, e

′
1, e

′
2.σ ⊢ e −→ σ ′

1 ⊢ e
′
1 ∧ σ ⊢ e −→ σ ′

2 ⊢ e
′
2

=⇒ e ′1 = e ′2 ∧ σ ′
1 = σ ′

2

It is not difficult to see that both of the uncached and
cached versions of the semantics are syntax-directed, so this
proof is straightforward.

Strong progress states that any well-formed expression is
either a value or evaluation can take a step from it.
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Theorem 4.2 (Strong Progress).
∀σ , e .value(e) ∨ ∃σ ′, e ′.σ ⊢ e −→ σ ′ ⊢ e ′

Similarly to determinism, we can observe that well-formed
non-values can each make a step via a semantic rule, so again
the proof is straightforward.
Finally, type preservation states that stepping an expres-

sion will not change its type.

Theorem 4.3 (Type Preservation).
∀σ ,σ ′, e, e ′.e ∈ t ∧ σ ⊢ e −→ σ ′ ⊢ e ′ =⇒ e ′ ∈ t

As noted earlier, in our Coq implementation we define
expressions to be dependent upon their type. We also define
the ‘step’ relation to be dependently typed, such that it is
impossible to create a step rule that breaks type preservation.
This means that our mechanisation gets type preservation
for free, without needing to be manually proven.

On paper, most of the proof for this property follows from
induction. The AppApp rule depends on v1 and v2 having
corresponding types t1 → t2 and t1. The type inference rules
for application expressions (Figure 4) say the expression
(left-hand side of the step) has type t2, and the mathematical
result of the function application (right-hand side of the step)
also yields a t2.
The AttrApp rule relies on the context being well-typed,

as defined in Sections 3.1 and 3.3. The type inference rule
for an attribution expression (Figure 4) gives an attribution
expression a type extracted from the attribute: τ (a). The rule
for type-correctness of a context also gives that an expression
extracted from the context has the type τ (a).

4.2 Cache Irrelevance
Cache irrelevance is much more difficult to prove than the
previous properties. This property states that if we begin
with any well-formed context and expression, and this ex-
pression eventually evaluates to a value, the value obtained
with caching is the same as that obtained without caching.
This property can be stated as follows, where

cached
−−−−−−→

∗ refers
to a series of steps using all extensions, and

uncached
−−−−−−−−→

∗ refers
to a series of steps without the caching extension:

Theorem 4.4 (Cache Irrelevance).
∀σ , e,v .

∃σ ′
1 .σ ⊢ e

cached
−−−−−−→

∗ σ ′
1 ⊢ v

⇐⇒ ∃σ ′
2 .σ ⊢ e

uncached
−−−−−−−−→

∗ σ ′
2 ⊢ v

Since we are only considering expressions that eventually
terminate, we can rule out attributes that lead to circular
dependencies and therefore split the cases into a) expres-
sions that don’t involve attributes at all, and b) expressions
that do refer to attributes but will eventually remove all at-
tribute value sub-expressions. In case (a), evaluation can’t
be affected by caching since there are no attributes, so the
value produced must be the same.

In case (b), we apply structural induction and assume that
all sub-expressions evaluate to the same value regardless
of caching. Therefore, we know that the value calculated
for an attribute without caching must be the same as the
value calculated the first time with caching, since apart from
the sub-expression attributes the only evaluation is in the
functional layer which is not affected by attributes. Finally,
we observe that the value obtained from the cache by subse-
quent evaluations of an attribute with caching must be the
same as the first value obtained, since the CacheWrite rule
updates the context with that value.

Cache irrelevance holds in our testing of the name analysis
attribute grammars described in Section 5. A mechanisation
of a proof of the general theorem is work in progress.

4.3 Cache Step Reduction
Given that evaluating an expression will not have a differ-
ent result under caching, we would also like to know that
evaluation will perform no more “work” with caching than
without. We define “work” to mean attribute evaluations,
computation in the functional layer, etc, but exclude the
CacheWrite rule which is just concerned with updating the
cache (Figure 10). Note that all other modified rules in the
cached version, either have a direct analogue in the uncached
version (AttrApp), or step “in time” with their underlying
expression (CacheLeft).
In the formal statement of the theorem, we annotate the

steps with their step counts.

Theorem 4.5 (Cache Step Reduction).

∀σ ,σ ′
1,σ

′
2, e,v .

σ ⊢ e
cached
−−−−−−→

n1 σ ′
1 ⊢ v ∧ σ ⊢ e

uncached
−−−−−−−−→

n2 σ ′
2 ⊢ v

=⇒ n1 ≤ n2

We know that the context is only ever updated in the
CacheWrite rule and this update involves overriding one
particular output expression with a value. Since cache irrel-
evance is established, we know that this value is the same
value that the overridden expression would evaluate to. Now
consider what was overridden. If a value was overriddenwith
the same value, then the context has not in fact changed. In
this instance, the cache update has had no effect on any
evaluation that follows, so the number of steps to a value
will remain unchanged. If a more complex expression has
been overridden with a value, then any evaluation that relies
on this particular output will receive a value instead of an
expression that would have evaluated to this value. Here we
have saved some steps, and so the cached evaluation will
complete in fewer steps than the uncached evaluation.

As for cache irrelevance, cache step reduction holds in our
testing of the name analysis attribute grammars described in
Section 5. A mechanisation of a proof of the general theorem
is work in progress.
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class A {
int y;
AA a;
y = a.x;
class AA {

int x;
}
class BB extends AA {

BB b;
b.y = b.x;

}
}

Figure 11. A PicoJava program.

Program ::= Item+

Item ::= Decl | Stmt
Decl ::= VarDecl | ClassDecl

VarDecl ::= Access Name
ClassDecl ::= Name Use? Block

Block ::= Item∗

Stmt ::= Access Exp
Exp ::= Access | BoolLit

Access ::= Use | Dot
Use ::= Name
Dot ::= Access Use

BoolLit ::= true | false

Figure 12. Abstract syntax of the PicoJava language.

An alternative caching result that we do not consider here
could count all steps. It would not be possible to prove a
reduction in steps when caching is used since the steps that
maintain the cache would now be counted. But it would
be interesting to add a cost model and then reason about
the trade-offs between re-evaluation of attributes and the
overhead of caching. We leave this result for future work.

5 Name Analysis for PicoJava
PicoJava is a cut-down version of Java which was first used
as an example for the JastAdd system2. The language is de-
signed to pose a realistic name analysis challenge (including
associated type analysis) without the distraction of orthog-
onal features. Figure 11 shows a typical program from the
JastAdd PicoJava specification test suite and Figure 12 shows
the version of PicoJava’s abstract syntax that wewill use. Our
version differs slightly from the JastAdd version to simplify
the presentation. It restricts different constructs as follows:

• declarations: variables and classes,
• statements: assignments,
• expressions: accesses and Boolean literals, and

2http://jastadd.cs.lth.se/examples/PicoJava

• types: Boolean predefined type.

For the purposes of name analysis, the key PicoJava con-
structs are programs and class declarations that each define
a scope for their constituent items. Defining occurrences of
names occur in variable declarations (where the Access spec-
ifies the variable’s type), and in class declarations (where
the optional Use specifies a superclass and the Item list is the
class body). Applied occurrences of names areUse constructs,
either directly (unqualified) or on the right-hand side of a
Dot construct (qualified).

We assume that abstract syntax trees have fields that are
named after their non-terminals. For example, if n is a Stmt
defined by Stmt ::= Access Exp then its two children are
n.access and n.exp.

5.1 Commonalities
Since the two programs we are comparing are solving the
same problem, there are some parts of the specification are
similar enough to be shared.

UnknownDecl is a unique declaration that is used when
name analysis cannot determine a relevant defining occur-
rence of a general name. Similarly, UnknownClass is a unique
class declaration for when a class is sought but can’t be found
(e.g., a superclass that is not defined). UnknownClass is as-
sumed to have no superclass and an empty block so it can be
safely searched and no identifiers will be found. Using this
approach simplifies the attribute equations since we don’t
need to explicitly handle the special case when a class is not
defined.
The function finddecl(s, l) searches through an item list l

looking for a declaration of the name s . If such a declaration
is found, it is returned, otherwise UnknownDecl is returned.
Figure 13 shows the definitions of superclass and type,

two attributes that are used by both of the name analysis
approaches. superclass gives the ClassDecl that represents
the superclass of a given class declaration, if there is one,
otherwise it gives the special value UnknownClass. Similarly,
type returns the ClassDecl that represents the type of a dec-
laration. When applied to a class declaration it returns that
declaration. When applied to a variable declaration it returns
the class of that variable. If neither of these situations ap-
ply or if the type of a variable is not a class, type returns
UnknownClass.

5.2 Notations
We use some short-hand notations in the following defi-
nitions to simplify the presentation. IF OK e1 ELSE e2 is
equivalent to

IF notequal(e1)(UnknownDecl) THEN e1 ELSE e2

In other words, if e1 is not unknown it evaluates to e1, other-
wise to e2.
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σ (n, superclass) n is a ClassDecl with a Use = IF n.use.decl IS A ClassDecl (1)
THEN n.use.decl
ELSE UnknownClass

otherwise = UnknownClass (2)

σ (n, type) n is a ClassDecl = n (3)
n is a VarDecl = IF n.access.decl IS A ClassDecl (4)

THEN n.access.decl
ELSE UnknownClass

otherwise = UnknownClass (5)

Figure 13. Equations for attributes that are shared by the two name analysis methods.

IF e1 AND e2 THEN e3 ELSE e4 is equivalent to

IF e1 THEN IF e2 THEN e3 ELSE e4 ELSE e4

In other words, an AND condition turns into nested condi-
tional expressions.

IF e IS A t , where t is a non-terminal name, is equiva-
lent to

equal(e.kind)(t)

where kind is an intrinsic attribute of each node that tags it
with its non-terminal type.

5.3 Environment Method
Figure 14 gives the attribute definitions for the environment
approach to performing PicoJava name analysis. decl is only
supposed to be called on Use nodes, but if we ask for a Dot’s
decl, the decl of itsUse is returned (E1). If the node in question
is on the “right-hand side” of a Dot (i.e., the Use is qualified)
then decl’s search begins in the class of the access on the
left-hand side (E2). Otherwise, the current environment is
searched (E3).
The environment method’s name analysis hinges upon

the env and cenv attributes which compile ordered lists of
declaration nodes that are in scope for the target node. env
finds declarations from the lexical scope, and also includes
declarations from cenv, which finds declarations from the
class inheritance chain. predefs is also appended to the decla-
ration list, so that predefined declarations can be searched if
an appropriate declaration is not found in the syntax tree (E5).
finddecl then searches the compiled list for the appropriate
declaration, returning UnknownDecl upon failure.

5.4 Lookup Method
Figure 15 gives the attribute definitions for the lookup ap-
proach to performing PicoJava name analysis. decl is much
the same as the decl for the environment method (Section 5.3)
except that the case for Uses on the right-hand side of a Dot
is handled in the lookup attribute.

While the environment method’s strategy is to collect all
appropriate declarations and bring them down to the target

node, the lookup method searches upward for the appro-
priate declaration, using the parameter of the attribute to
remember the name it is looking for. The central attribute
is lookup that defers some of its reasoning to locallookup
and remotelookup. This approach was pioneered with the
development of parameterised attributes in the JastAdd sys-
tem [2].
The general strategy of the lookup method is to move

up the tree syntactically, applying appropriate searches as
it goes. If a Block (the body of a ClassDecl) is reached, the
locallookup attribute is used to search the local scope (first
branch of L5). If locallookup fails, remotelookup searches up
the superclass chain (second branch of L5). Finally, if neither
of these searches finds the declaration, lookup moves up the
tree into outer scopes (default branch of L5). The other cases
for lookup search the appropriate class’s block for a qualified
use (L6) or the local scope by default (L8).

locallookup is only evaluated on a Block or a Program,
whose children are passed into finddecl. remotelookup is only
evaluated on a Block, and performs a locallookup on this
block before searching up the superclass chain if there is a
superclass (L12). If the appropriate declaration is not found
in the tree, locallookup eventually searches predefs to see if
a predefined symbol matches the lookup name (L9).

5.5 Method Equivalence
The motivator for implementing name analysis in two differ-
ent ways was to compare them in a formal and structured
way. The main thing we want to know is that both methods
will produce the same result when determining the decla-
ration for the same node in a tree. In Theorem 5.1, we use
decll and decle to refer to the decl attribute from Figures 15
and 14 respectively. Similarly we use σl and σe to represent
contexts which have the same intrinsic attributes but contain
attribute definitions from Figures 15 and 14 respectively.

Theorem 5.1 (Lookup vs Environment Equivalence).

∀σl ,σe , e,v .
∃σ ′

1 .σl ⊢ n.decll −→
∗ σ ′

1 ⊢ v

⇐⇒ ∃σ ′
2 .σe ⊢ n.decle −→

∗ σ ′
2 ⊢ v
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σ (n, decl) n is a Dot = n.use.decl (E1)
n is a Use on RHS of a Dot = finddecl(n.name,n.parent.access.decl.type.block.cenv) (E2)
n is a Use = finddecl(n.name,n.env) (E3)
otherwise = UnknownDecl (E4)

σ (n, env) n is a Program = n.items ++ predefs (E5)
n is a Block = n.cenv ++ n.parent.env (E6)
n is a UnknownDecl = {} (E7)
otherwise = n.parent.env (E8)

σ (n, cenv) n is a Program = {} (E9)
n is a Block = IF equal(n.parent.superclass)(UnknownClass) (E10)

THEN n.items
ELSE n.items ++ n.parent.superclass.block.cenv

n is a UnknownDecl = {} (E11)
otherwise = n.parent.cenv (E12)

Figure 14. Equations for the environment method of PicoJava name analysis.

σ (n, decl) n is a Dot = n.use.decl (L1)
n is a Use = n.lookup(n.name) (L2)
otherwise = UnknownDecl (L3)

σ (n, lookup, s) n is a Program = n.locallookup(s) (L4)
n is a Block = IF OK n.locallookup(s) (L5)

ELSE IF OK n.parent.superclass.block.remotelookup(s)
ELSE n.parent.lookup(s)

n is a Use on RHS of a Dot = n.parent.access.decl.type.block.remotelookup(s) (L6)
n is a UnknownDecl = UnknownDecl (L7)
otherwise = n.parent.lookup(s) (L8)

σ (n, locallookup, s) n is a Program = IF OK finddecl(s,n.items) (L9)
ELSE finddecl(s, predefs)

n is a Block = finddecl(s,n.items) (L10)
otherwise = UnknownDecl (L11)

σ (n, remotelookup, s) n is a Block = IF OK n.locallookup(s) (L12)
ELSE IF equal(n.parent.superclass)(UnknownClass)

THEN UnknownDecl
ELSE IF OK n.parent.superclass.block.remotelookup(s)
ELSE UnknownDecl

otherwise = UnknownDecl (L13)

Figure 15. Equations for the lookup method of PicoJava name analysis.

The broad strokes of a proof for this theorem are easy to
understand. The superclass and type attributes are shared
between the two methods, as well as the finddecl function.
As discussed in Section 5.4, the decl attribute follows the
same logic in each method, deferring either to lookup or env,
thus the focus of the proof is on these two attributes.
The intuition of the proof comes from the observation

that lookup applies finddecl to items from the local syntactic

scope, then to the items from each local scope up the super-
class chain, then to the original location’s parent scope, and
so on. Conversely, env compiles all items (in order) from first
the local scope, then all local scopes up the superclass chain,
then to the original location’s parent scope, and so on, and
feeds this list to finddecl.

A proof therefore requires showing that the concatenation
of all the scopes that lookup examines is identical to the list of
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items that env constructs. It follows trivially that searching
a set of lists in order produces the same result as searching a
concatenation of these lists.

5.6 Mechanisation
Both of the described approaches have been fullymechanised
in Coq, almost exactly as shown in Figures 14 and 15. We
have taken the tree shown in Figure 11 and evaluated the decl
attribute on everyUse node to ensure that the correct result is
obtained. Our tests demonstrate that the two name analysis
programs are producing the same results. A mechanisation
of a proof of the equivalence theorem is work in progress.
We also ran tests to confirm that caching does not affect

the final result, but does affect the number of steps required
to resolve a final value. Our mechanisation can produce
a trace of the steps performed or a summary view of the
attributes that were evaluated. Cache irrelevance and cache
step reduction holds for all performed tests.
The discussion above simplifies one aspect of the name

analysis specifications to keep the presentation clear. The
finddecl function is actually implemented as an attribute in
our mechanised implementation. Searching a list of nodes for
the appropriate declaration involves accessing every node’s
Name attribute, but it is not possible for a value-level func-
tion to access attribute values including intrinsic attributes
such as Name.

6 Conclusion
The Saiga language and its semantics presented here satisfy
our goal of isolating the essence of attribute evaluation from
the details of particular attribute grammar system imple-
mentations. We have shown how the formalisation can be
used to reason about attribute evaluation, both in general via
properties such as cache irrelevance, or in terms of specific
attribute grammars such as in the name analysis example. A
key characteristic of our approach is that it unifies the core
concepts: intrinsic attributes, extrinsic attributes and tree
structure; synthesised and inherited attributes; equational
definitions and caching. By defining simple general mecha-
nisms we control the complexity of the core, thereby limiting
the reasoning burden. These results show that this approach
is realistic, practical and can usefully form the basis of future
theoretical explorations of attribute grammar evaluation.

Current work involves extending the formalism to handle
dynamic detection of attribution cycles, circular attributes
that evaluate to a fixed point and higher-order attributes
that extend the tree structure. The latter is another way in
which the evaluation context can be updated, in this case by
adding new nodes with relationships to existing ones. We

are also mechanising the properties for which only informal
proofs have so far been completed. More speculative future
work will investigate cost models for evaluation so that the
trade-offs between caching and not caching can be modelled.
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