
An Evaluation of an Automatically Generated

Compiler

ANTHONY M� SLOANE

James Cook University

Compilers or language translators can be generated using a variety of formal speci�cation tech�
niques� Whether generation is worthwhile depends on the e�ort required to specify the translation
task and the quality of the generated compiler� A systematic comparison was conducted between
a hand�coded translator for the Icon programming language and one generated by the Eli compiler
construction system� A direct comparison could be made since the generated program performs
the same translation as the hand�coded program� The results of the comparison show that e�cient
compilers can be generated from speci�cations that are much smaller and more problem oriented
than the equivalent source code� We also found that further work must be done to reduce the
dynamic memory usage of the generated compilers�

Categories and Subject Descriptors� C�� �Performance of Systems�� Measurement techniques	
D�
�m �Software Engineering�� Miscellaneous�reusable software	 D���� �Programming Lan�

guages�� Processors�translator writing systems and compiler generators

General Terms� Experimentation Languages Performance

Additional Key Words and Phrases� Compiler generation

�� INTRODUCTION

Considerable progress has been made toward the goal of automatically generating
programming language compilers� Using specialized notations it is possible to spec
ify compilation subtasks such as lexical analysis �Bumbulis and Cowan ����� Gray
����� Heering et al� ���	� Heuring ����� Lesk ������ parsing �Dencker et al� �����
Gray ����� Johnson ����� R�ohrich ������ and semantic analysis �Deransart et al�
����� Lee ����� Schmidt ����� Tofte ������ Other compiler tasks such as code
generation for complex architectures have partially yielded to attack and are the
subject of continuing research �Emmelmann ����� Fraser et al� ���	�� Libraries of
existing infrastructure can be used to combine solutions for subtasks into a complete
compiler implementation �Gray et al� ���	��
Proponents of automatic compiler generation argue that it is a viable technique

for producing compilers that would normally be coded by hand �e�g�� see Lee ������
and Gray et al� ����	�
� This claim must be validated by comparing the genera
tion of compilers with the production of compilers without the use of generators�
Evaluation should be carried out often enough to enable crosspollenation to occur
and isolation to be avoided� The potential bene�ts are large because improvements
resulting from evaluation will be available to all users of a generation system� In
contrast� improved techniques for handcoding compilers are often not widely pub

An earlier version of this article appeared in the Proceedings of the ��th Australasian Computer
Science Conference Adelaide Australia February �����
Author�s address� Department of Computer Science James Cook University Townsville QLD
���� Australia	 email� Anthony�Sloane�jcu�edu�au�



� � Anthony M� Sloane

licised and may be �reinvented� by many developers�
Previous work evaluating the performance of generated compilers has largely

concentrated on subtasks of the compilation problem� Lexicalanalyzer generators
have been compared with each other �Bumbulis and Cowan ����� Gray ����� Heur
ing ����� and with the �minimal� lexical analyzer� a program that examines each
input character once without any further processing �Gray ������ Similarly� the
performance of parser generators has been examined �e�g�� see Waite and Carter
������ and Grosch ������
� Tofte ������ reports timing results from a comparison
of two generated code generators for the same simple language�
Comparatively little work has evaluated complete generated compilers� One

study compared di�erent ways of specifying the same compiler from a notational
point of view �Waite et al� ������ Based on the same input language� detailed ex
periments were performed to identify problems with generation tools �Gray ������
Some comparison of generated scanners with handcoded scanners was performed
but was not extended to other compilation phases� Lee ������ p���� summarizes
results obtained measuring the performance of compilers generated from denota
tional speci�cations� The generated compilers measured were between 	�� and ���
slower than handwritten ones� Also� the code produced by the generated compilers
was in an intermediate form that imposed signi�cant time penalties compared to
compiled code� Lee also reports performance results for compilers generated by his
MESS system� MESSgenerated compilers generate good object code compared to
compilers for related languages�
Two main de�ciencies in previous work are addressed by this article� ��
 a lack of

evaluation of complete generated compilers and �	
 limited comparisons of gener
ated compilers with handwritten ones� While independent evaluation of generated
compiler components serves a purpose for tool developers� users rarely use these
components in isolation� Since complete compilers are being generated� complete
compilers should be evaluated� Similarly� it is useful for tool developers to know how
their tools shape up against other tools� The ultimate test of a compiler generation
system� however� is against the most widely used compiler construction technique�
hand coding�
This article reports the results of a comparison between a compiler generated by

the Eli compiler construction system� �Gray et al� ���	� and an equivalent existing
compiler written largely by hand� To enable direct comparison� the generated com
piler was constructed to duplicate the functionality of the existing compiler� �Hence�
the quality of the generated code is not part of the comparison�
 We compare ��

the construction methods along the dimensions of the amount of information the
compiler writer must provide and �	
 how long it actually takes to construct the
compiler given that information� We also compare the quality of the two compilers
by measuring their performance compiling a large suite of programs� Both time
and space consumption are considered�
Section 	 describes the functionality of the compilers and the test program suite

used� while the following section summarizes our results� We found that compiler
generation techniques o�er notational advantages because speci�cations are shorter
than the equivalent code and are more closely related to the problem domain�

�Eli distribution information can be obtained from http���www�cs�colorado�edu��eliuser�



Evaluation of an Automatically�Generated Compiler � �

The generated compiler is usually faster than the handwritten compiler but is
much larger and consumes a lot more dynamic memory� Section � contains a
moredetailed analysis of some of the extreme measurement results� In particular�
we consider the reasons why the generated compiler performs well and discuss
areas for improvement� Finally� we analyze the reasons for the excessive memory
consumption by the generated compiler�

�� TWO COMPILERS AND THEIR INPUT

Building a fullscale compiler for a generalpurpose programming language is a
signi�cant e�ort� For practical reasons it was necessary to �nd a language that
did not require an inordinate amount of work to compile� The translation task
had to be complex enough to enable realistic evaluation� but not too complex so
as to overstep the capabilities of current compiler generation tools� For example� a
comparison with an optimizing compiler for a pipelined architecture would certainly
be interesting� However� the state of the art in code generator generators is not at
the stage where the backends of compilers of this kind can be fully �or even mostly

generated� Consequently� the �generated� compiler would necessarily include a
signi�cant amount of nongenerated code� limiting the utility of the comparison�
The Icon programming language �Griswold and Griswold ����� was chosen be

cause translation of Icon is of intermediate di�culty and because a welldocumented
implementation of the language is freely available �Griswold and Griswold ������
Icon is a generalpurpose procedural language with particularly good support for
string processing and highlevel data structures such as tables and lists� More
unusual features included in Icon are goaldirected evaluation� generators� and co
expressions�

��� Icont

The baseline for the experiment was provided by the program Icont� part of the
Icon implementation from the University of Arizona �version ����
�� Icont trans
lates Icon programs into a target form called Ucode �Griswold and Griswold ������
Ucode is a stackbased� post�x language designed explicitly for implementing Icon
programs but similar in style to conventional assembly languages�
The distributed version of Icont was modi�ed in the following ways�

��
 Invocation of the Icon preprocessor was disabled� Since we were not interested
in measuring the implementation of the preprocessor its functionality was not
duplicated�

�	
 Icont as distributed contains code to link the Ucode for multiple input �les and
to invoke the generated program using a separate interpreter� This code was
removed because it was unrelated to the translation task�

��
 Icont outputs a variety of messages indicating its progress during translation
�mainly procedure names as they are processed
� The code to generate these
messages was removed to avoid biasing measurements with unnecessary output�

An informal inspection of the Icont source code indicates that it was produced by
a programmer or programmers with extensive C programming experience�

�Icont is available via ftp from cs�arizona�edu as part of the Arizona Icon distribution�



� � Anthony M� Sloane

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Tokens

0 10000 20000 30000 40000 50000 60000 70000
Bytes

Fig� �� Size distribution for the Icon program test suite� Each plus sign represents a single test
program�

��� EliIcont

Icont was compared to an Icon translator �hereafter referred to as EliIcont
 con
structed using version ����� of the Eli compiler construction system �Gray et al�
���	��� EliIcont was written by the author� an experienced Eli user�
EliIcont was speci�cally designed to produce the same Ucode output as Icont�

except for label numbering� To reproduce the labelnumbering algorithm of Icont
would have introduced code that would clearly not be written by anyone construct
ing the translator for any purpose other than comparison� The labels generated by
EliIcont are placed in the same places as those generated by Icont� and there is a
onetoone mapping between them� In all other respects the Ucode generated by
EliIcont is identical to that produced by Icont�
Other lessimportant aspects of Icont were duplicated in EliIcont as much as

was practical� For example� relevant commandline options are supported� and
equivalent user diagnostics are produced�
Once the functionality of Icont was duplicated by EliIcont and once the speci

�cations were reasonably readable� the speci�cations were �frozen�� No attempt
was made to improve EliIcont�s performance beyond that provided by the frozen
version� since it would have been hard to know when to stop� In summary� EliIcont
is representative of a class of speci�cations written in a �natural� style by experi
enced Eli users without any particular focus on performance� It is reasonable to
assume that Icont has been optimized somewhat since it was �rst written� so the
results presented in later sections are in some sense biased against EliIcont�

��� The Test Suite

The two programs were compared using a suite of ��� source �les obtained from
the University of Arizona Icon distribution� Every Icon program �le from the
distribution was included as distributed� except that those requiring preprocessing
were preprocessed �rst� Their sizes in tokens and bytes are summarized in Figure ��
The majority of the �les are real applications or parts thereof� including graph

ics programs� textprocessing applications� and various games� Thus the results
reported later in this article apply to a wide variety of typical Icon programs� The
suite also provides a particularly good basis for a comparison of translator function

�The speci�cations for EliIcont can be obtained from the author�



Evaluation of an Automatically�Generated Compiler � �

Table I� Speci�cation Sizes Measured in Bytes Allocated to Compiler Subtasks

Total Lexical Anal� Parsing Code Gen� Misc�
Decl Oper Decl Oper Decl Oper Decl Oper Decl Oper

Icont �
���� ����� 
��
� 
���� ����

����� ������ 
��� �
��� ���� 
�
�� ��� 
���� � ����


EliIcont ����� ���� �
�� ����� ���
����� ����� ��� ���� �
�� � ��
�� ���� ��� �

Comments were �rst removed and each run of consecutivewhite space was compressed to a single
space�

ality because it includes inputs designed to test the Arizona implementation fully�
This fact gives us con�dence that EliIcont does in fact duplicate the functionality
of Icont�

�� RESULTS

This article concentrates on two attributes of compiler construction techniques
which can be used for evaluation� e�ort and quality� This section summarizes
measurements of these attributes of Icont and EliIcont� Section � analyzes the
performance of the translators in more detail�
All measurements reported in this article were performed on a DEC ��������

Alpha AXP workstation running DEC OSF�� V���� All �les were stored on a local
disk�

��� Speci�cation Size

One way to assess the e�ort required to use a program construction method is to
analyze the information that must be provided by the user� There are two cat
egories of information that are used to construct our two compilers� operational
speci�cations and declarative speci�cations� The former consists of code written
in a generalpurpose highlevel language �in our case� C
 that describes how to
solve a problem� Declarative speci�cations are written in problemspeci�c nota
tions and processed by tools to produce operational code� The identifying feature
of a declarative speci�cation is that it describes the problem itself rather than a
particular solution� For example� a contextfree grammar is a declarative speci�ca
tion of a parsing problem� whereas code implementing a recursivedescent parser is
an operational speci�cation�
Although it is not possible to compare the speci�cations for Icont and EliIcont

directly� it is useful to get some idea of the relative e�ort needed to create them�
Bearing in mind that the speci�cations re�ect the di�erent programming styles of
their authors� Table I summarizes the speci�cation sizes� �The �gures for Icont are
in�ated slightly because they include some con�guration and other code that are
shared with other parts of the Arizona Icon distribution�
 Since formatting styles
vary� the �gures are presented as byte counts after all comments were removed and
white space compressed� These measurements are supplied only to give a feeling
for the comparative sizes of the two compilers and are not generally applicable�
The two programs have the same basic structure� They both parse the input

text and create an abstract tree representing the entire program� The abstract
tree is then traversed to emit code� The �Parsing� column of Table I includes



� � Anthony M� Sloane

tree construction� �Code Generation� includes semantic analysis because the two
subtasks are intertwined in both compilers�
EliIcont is constructed mostly from declarative speci�cations with a small amount

of supporting code� The declarative speci�cations are�

��
 A small set of regular expressions for lexical analysis�

�	
 A concrete grammar for parsing�

��
 A �veline speci�cation to control tree construction�

��
 Just over ���� lines of attribute grammar code to perform semantic analysis
and code generation�

��
 A short speci�cation of output structure�

The supporting code is split about twothirds for lexical analysis and onethird
for output routines� The lexicalanalysis code deals with complexities of Icon such
as the insertion of semicolons at the ends of lines under various circumstances�
handling multiline strings with character escapes� and processing �line directives
�similar to those supported by C
��

Icont is built mostly from operational speci�cations� Declarative speci�cations
are used for the parsing grammar and tables of operators and keywords� A hand
written scanner provides tokens for a YACCgenerated parser� Parsing actions
invoke tree construction routines� and a tree walker emits code�
Overall� EliIcont requires speci�cations less than half the size of those required by

Icont� Code generation is more verbose in the attribute grammar formalism� but
otherwise the phases of EliIcont require much smaller speci�cations� The major
di�erences are�

�Icont�s lexicalanalysis phase is almost completely operational� The only declar
ative part is a table of operators� In contrast� the �easy� bits of EliIcont�s lexical
analyzer are speci�ed with one line each� Only the complex parts �see above

require operational code�

�Icont uses YACC for parsing but requires extra code to construct the abstract
tree� Almost all of the tree construction necessary in EliIcont is provided auto
matically by Eli based on an analysis of the parsing and abstract grammars�

�The Icont tree traversal for code generation is directly coded� so it is hard to
determine what �if any
 sidee�ects there may be if the tree structure is changed
�Figure 	
� Also� storage for auxiliary data must be explicitly managed �e�g�� the
mark count
� Since EliIcont uses an attribute grammar formalism� tree traversals
and attribute storage are computed automatically from dependences that re�ect
the structure of the output code �Figure �
�
The �gures illustrate that the two code generation speci�cations are quite simi
lar� The EliIcont approach is more verbose due to the extra structural elements
that must be included �such as the production text and symbol names
� How
ever� the extra structure is likely worth it since the speci�cation should be more
maintainable since the traversals and storage are not explicit�

�This ratio of declarative�to�operational speci�cations for lexical analysis is not typical for Eli�
generated compilers� It is usually the case that little or no operational speci�cation is needed�



Evaluation of an Automatically�Generated Compiler � �

lab � alclab����

emitl��mark�	 lab��

loopsp
�markcount���

traverse�Tree�t���

loopsp
�markcount

�

emit��unmark���

traverse�Tree��t���

emitl��goto�	 lab����

emitlab�lab��

traverse�Tree��t���

emitlab�lab����

Fig� 
� Icont code generation for an if�then�else expression
with three subexpressions� Code is emitted during an ex�
plicit traversal of the tree� Maintenance of auxiliary data
such as mark counts must be coordinated with the traversal�

RULE� Ifexpr ��� �if� Expr �then� Expr �else� Expr

COMPUTE

Expr����marks � IncHeadintList �Ifexpr�marks��

TRANSFER marks WITH Expr���	 Expr����

�lab� � GenLab ���

�lab� � GenLab ���

Ifexpr�code � PTGseq� �PTGinsnl ��mark�	 �lab��	 Expr����code	

PTGIunmark ��	 Expr����code	

PTGinsnl ��goto�	 �lab��	 PTGlab ��lab��	

Expr����code	 PTGlab ��lab����

END�

Fig� �� EliIcont code generation for an if�then�else expression� PTG functions build output tree
constructs which are emitted later� In contrast to the Icont version �Figure 
� no explicit tree
traversal is needed and auxiliary data are passed as attributes instead of needing to be coordinated
with the traversal�

�Eli provides extensive infrastructure support� so almost no speci�cation is needed
other than for the translation tasks themselves�� The code for Icont contains
a large amount of infrastructure support including memory allocation� string
manipulation� commandline processing� and a driver to control the compilation
phases�

In summary� the support that Eli provides enables compiler writers to concen
trate more easily on the translation problem rather than peripheral details� Eli�s
philosophy �Gray et al� ���	� is to make the common things easy to do and to
provide mechanisms by which moredi�cult tasks can be accommodated� This
approach particularly pays o� for EliIcont for lexical analysis� tree construction�
automatic generation of tree traversal algorithms� and compiler infrastructure�
Eli can be asked to provide complete source code so that a compiler implementa

tion can be transported to sites where Eli is not present� The source code generated
by Eli for EliIcont is much larger than the speci�cations provided by the user� For
EliIcont� the total size is about 	����� noncommented nonblank lines in �� �les�
Of this� about ��� is generated code� ��� is from Eli libraries� and the rest is
the operational portion of the speci�cations� The generated code is mostly lexical
analysis ��	�
� parsing and tree construction �	��
� and code generation ����
�

�The only miscellaneous speci�cation is a three�line description of the compiler�s command line�



� � Anthony M� Sloane

��� Generation Time

Another measure of the utility of a compiler generation method is the amount of
time it takes to process the speci�cations to produce the compiler� Dynamically
linked� unoptimized executables for Icont and EliIcont can be built in 	� seconds
and 	�� seconds of real time� respectively�� The overhead of Eli is signi�cant but
not prohibitive� If the generated C source for EliIcont is extracted from Eli and
compiled independently the build time reduces to �� seconds�

��� Compiler Execution Time

To measure the relative speed of the two translators they were both instrumented
using ATOM ��� which uses binary modi�cation techniques to enable a large vari
ety of performance analysis tools to be constructed �Eustace and Srivastava ������
ATOM was also used to collect the memory utilization measurements reported later
in the article�
An ATOMbased reimplementation of the gprof tool �Graham et al� ���	� was

used to collect callgraphbased execution pro�les� The original gprof uses program
counter sampling to estimate execution time� In contrast� the ATOM version uses
the Alpha cycle counter �Sites ���	� to enable exact execution times to be collected�
Also� gprof apportions execution time to the pro�le collection routine� so pro�les
are not exact representations of nonpro�led execution� The ATOM version does
not have this drawback�
All execution times reported in this article are in terms of Alpha machine cycles�

A bene�t of the exact measurements obtainable with ATOM is that processing of
small inputs can be used without the measurements being a�ected by measuring
overhead or the granularity of the timing mechanism� Only userlevel cycle counts
were collected to remove perturbations due to factors outside the scope of this article
�such as operating system overhead
� Thus the �gures reported are independent of
system load�
Both Icont and EliIcont were compiled with the OSF C compiler using the highest

level of optimization �O� option
� Optimizations performed at this level include
global register allocation and extensive procedure inlining� The executables were
statically linked to avoid runtime overheads associated with dynamic linking and
to enable them to be processed by ATOM�
Figure � summarizes the execution times of the two programs running on the

complete test suite� Each vertical line represents a subset of the test programs�
The percentage axis indicates the cycles taken by EliIcont to process those inputs
relative to the cycles taken by Icont on the same inputs� EliIcont processes ���
of the ��� programs ����
 faster than Icont� Averaged over the whole test suite
EliIcont is approximately ���� faster�

��� Memory Usage

The memory usage of a program can play a large role in determining its overall
performance� Memory access patterns can produce subtle performance problems
due to architectural features such as cache organization� Unfortunately� the per
formance characteristics of memory hierarchies vary considerably from machine to

�Measured by the Unix time��� command on a lightly loaded system and averaged over ten runs�



Evaluation of an Automatically�Generated Compiler � 	

0

5

10

15

20

25

30

35

40

45

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

F
re

qu
en

cy

Relative percentage of execution cycles

Fig� �� The execution time of EliIcont relative to the execution time of Icont� Zero on the x�axis
represents the runtime of Icont� Spikes to the left of zero indicate programs for which EliIcont
was faster than Icont�

Table II� Sizes of Memory Used by Icont and EliIcont �in Kilobytes�

Icont EliIcont Icont EliIcont
Text �
� 
�� Initialized Data �� ��
Heap 


 ���� Uninitialized Data 
� ��

Heap consumption is the maximum amount allocated at any one time
during translation of the largest available application program�

machine� making general conclusions hard to reach� For this reason� this section
only considers �rst order e�ects by looking at the overall amount of memory used�
Table II summarizes the memory consumption of the two compilers� Heap con

sumption was measured while translating the largest application program �an X��
text widget
� Two major points of di�erence can be seen from Table II� First� as
noted in Section ���� the Eligenerated compiler contains a lot more code� Second�
EliIcont uses a lot more dynamic memory� The reasons for this di�erence will be
discussed in Section ����

�� PERFORMANCE ANALYSIS

The measurements reported in Section � show that there is an overall performance
advantage in generating a compiler for translating Icon compared to the available
Icon translator� However� there are some programs for which the generated com
piler comes o� second best� Moreover� the memory consumption of the generated
compiler is higher than it needs to be�
This section considers the extreme points of Figure � in an attempt to under

stand the reasons for the performance di�erences� A program at the left end of
the �gure represents a signi�cant advantage for the generated translator� These




� � Anthony M� Sloane

programs provide the best context in which we can determine the reasons why
compiler generation is better� Conversely� the programs at the right end of the
�gure represent programs for which the generated compiler performs badly� Study
of these programs may suggest re�nements of compiler generators that will further
improve the performance of generated compilers� We also analyze the reasons for
the high memory consumption of the generated compiler�

��� In�uence On Current Practice

One of the bene�ts of compiler generation systems is that they allow users to take
advantage of good compiler construction practices without needing to be experts� A
good case in point is provided by the program for which EliIcont performs the best
relative to Icont� When processing this program� Icont�s lexical analyzer consumes
about ��� �	�� kilocycles
 of the execution time� compared with about ��� ���
kilocycles
 for EliIcont�s lexical analyzer on the same program� This di�erence is
more than the overall di�erence in execution times for the two compilers on this
input�
Closer analysis of Icont reveals that most of the lexicalanalysis time ���� of the

total execution time
 is spent in a routine to get the next character from the input�
Previous research has shown that this is an area which deserves to be handled
carefully �Waite ������ As a result� Eli includes a support module that provides
e�cient access to input characters without any special e�ort on the part of the
compiler writer�

��� E�ciency Lessons

On the other side of the coin are the �� programs for which EliIcont performs
poorly compared to Icont� EliIcont su�ers from an initialization ine�ciency due
to an Eli library module that maintains scoping information in an environment
structure� Currently the whole of this structure is initialized with room for ���	
identi�ers regardless of how many are actually needed� Given that the largest input
has only ���� identi�ers much of the space and time spent during initialization is
wasted� Reducing the initialization overhead by half would allow EliIcont to compile
an additional �� of the test inputs faster than Icont� Dynamic initialization may
improve on this result� but the runtime penalties of such an approach need to be
investigated�
Of the eight programs for which EliIcont is more than �� slower than Icont�

six are a�ected by environment initialization� For the other two programs ����
and ���� slower
 it is hard to �nd an obvious reason for the di�erence� One
possible factor is a di�erence between the abstract tree traversal overheads of the
two compilers� As we will see in the next section� EliIcont allocates more abstract
tree nodes than Icont� so it is more sensitive to extra �xed overhead in traversal�

��� Dynamic Memory Consumption

Section ��� drew attention to the large amount of dynamic memory used by EliIcont
relative to Icont� While main memory is a relatively cheap resource compared to



Evaluation of an Automatically�Generated Compiler � 



CPU speed� a factor of six is a high price to pay for using a generated compiler��

Closer examination of the memory dynamically allocated by EliIcont shows that
the majority of it constitutes nodes for either the abstract tree or the output tree�
The abstract tree is the basis for attribution �semantic analysis and code generation

and stores much of the data used during this process� EliIcont uses an Eli tool that
allows output to be built in a piecemeal fashion according to an output grammar�
Once complete� the output tree is traversed in a depth�rst manner to actually
produce the output�
Running on the text widget described in Section ���� EliIcont dynamically allo

cates about ���� kilobytes of memory� Of this amount� about �		 kilobytes ����

is used for 		�	�� abstract tree nodes and just over ��� kilobytes ����
 for 	�����
output tree nodes� Abstract tree nodes consume 	� bytes on average and output
tree nodes 		 bytes� For the same program� Icont allocates about ��� kilobytes for
������ abstract tree nodes with an average node size of �� bytes�
Much previous research has been devoted to spacesaving optimizations for at

tribute grammar systems �e�g�� Deransart et al� ������� Hall ������� and Kastens
������ �����
� Work is currently underway to implement new optimizations in Eli
and measure their e�ectiveness� Initial results indicate that signi�cant space savings
can be achieved�
The approach of building a complete output tree is questionable for this ap

plication since Icont demonstrates that output during abstract tree traversal is
possible� For morecomplex output languages than Ucode the memory overhead of
constructing an output tree may be warranted if speci�cations are simpli�ed as a
result� Preliminary work on optimizing output tree space shows that up to ��� can
easily be saved if identical leaf nodes are shared� More than ��� of the remaining
space is currently devoted to sequencing information� so current research is aimed
at reducing this overhead�

�� CONCLUSION

Comparisons of automatically generated compilers with equivalent handwritten
compilers are important because they are the best to enable the utility of generation
systems to be ascertained� The results from these kinds of comparisons are useful
for two reasons� First� compiler writers who do not use generators may be convinced
of the utility of their use� This article shows that a generated compiler can be faster
than a handwritten one and can be produced from smaller� more problemoriented
speci�cations� Eli embodies detailed domainspeci�c knowledge that allows the
compiler writer to concentrate on aspects speci�c to the translation� while at the
same time producing a competitive compiler�
Second� developers of generation systems can use evidence from detailed com

parisons to determine areas in which generated compilers lag behind handwritten
compilers� For example� it is clear that the dynamic memory consumption of Eli
generated compilers should be addressed� Because any forthcoming improvements
will be embodied in Eli� they will be available to all Eli users� This contrasts with
the situation for handwritten compilers where improvements to one compiler are

�It should be noted that the dynamic memory consumption reported for both programs is larger
than it would be on many machines due to the use of ���bit pointers on the DEC Alpha�




� � Anthony M� Sloane

usually not easily incorporated into other compilers�
Future work should include more studies of the type described in this article�

Similar studies should be conducted for other compiler generation systems to de
termine whether the results presented here are Eli speci�c or are characteristic of a
variety of generation approaches� The scope of evaluation should also be increased�
While the Icon translator served as a good starting point for comparisons� it is nec
essary to gauge the e�ectiveness of generated compilers over a range of languages
and in competition with a variety of handwritten compilers� In particular� it would
be useful to compare a generated compiler with a handwritten compiler that did
not explicitly build a complete abstract tree� Further work should also consider is
sues arising in generating compilers that perform code generation for real machines
including optimization for modern architectures�

ACKNOWLEDGMENTS

Many thanks to the Icon team at the University of Arizona for making their Icon
implementation freely available� Thanks to Alan Eustace and Amitabh Srivastava
of DEC Western Research Laboratory for ATOM� WilliamWaite� Karl Prott� Sam
Kamin� and the anonymous reviewers made suggestions that improved the article�

REFERENCES

Bumbulis� P� and Cowan� D� D� ����� RE
C� A more versatile scanner generator� ACM Lett�

Program� Lang� Syst� �� ��� �Mar��Dec�� ������

Dencker� P� D�urre� K� and Heuft� J� ����� Optimization of parser tables for portable
compilers� ACM Trans� Program� Lang� Syst� �� � �Oct�� ������
�

Deransart� P� Jourdan� M� and Lorho� B� ����� Attribute Grammars� De�nitions� Sys�

tems and Bibliography� Lecture Notes in Computer Science vol� �
�� Springer�Verlag
Berlin Germany�

Emmelmann� H� ����� BEG�A Back End Generator� GMD Forschungsstelle an der Universi�
taet Karlsruhe Karlsruhe Germany�

Eustace� A� and Srivastava� A� ����� ATOM� A �exible interface for building high perfor�
mance program analysis tools� Tech� Rep� TN��� Digital Western Research Laboratory
Palo Alto Calif�

Fraser� C� W� Hanson� D� R� and Proebsting� T� A� ���
� Engineering a simple e�cient
code generator generator� ACM Lett� Program� Lang� Syst� �� � �Sept�� 
���

��

Graham� S� L� Kessler� P� B� and McKusick� M� K� ���
� gprof� A call graph execution
pro�ler� In Proceedings of the ACM SIGPLAN 	
� Symposium on Compiler Construction�

SIGPLAN Not� ��� � �June� �
���
��

Gray� R� W� ����� Generating fast error recovering parsers� M�S� thesis Dept� of Computer
Science Univ� of Colorado Boulder Colo�

Gray� R� W� ����� A generator for lexical analysis that programmers can use� In Proceedings

of the Summer USENIX Conference� USENIX Assoc� Berkeley Calif� ��������

Gray� R� W� ����� Declarative speci�cations for automatically constructed compilers� Ph�D�
thesis Dept� of Computer Science Univ� of Colorado Boulder Colo�

Gray� R� W� Heuring� V� P� Levi� S� P� Sloane� A� M� and Waite� W� M� ���
� Eli� A
complete �exible compiler construction system� Commun� ACM �� 
 �Feb�� �
������

Griswold� R� E� and Griswold� M� T� ����� The Icon Programming Language� Prentice�Hall
Englewood Cli�s N�J�

Griswold� R� E� and Griswold� M� T� ����� The Implementation of the Icon Programming

Language� Princeton University Press Princeton N�J�

Grosch� J� ����� Lalr�A generator for e�cient parsers� Softw� Pract� Exper� ��� �� �Nov��
����������



Evaluation of an Automatically�Generated Compiler � 
�

Hall� M� L� ����� The optimization of automatically generated compilers� Ph�D� thesis Dept�
of Computer Science Univ� of Colorado Boulder Colo�

Heering� J� Klint� P� and Rekers� J� ���
� Incremental generation of lexical scanners�ACM
Trans� Program� Lang� Syst� ��� � �Oct�� �����
��

Heuring� V� P� ����� The automatic generation of fast lexical analysers� Softw� Pract� Ex�
per� ��� � �Sept�� ��������

Johnson� S� C� ����� YACC � Yet another compiler�compiler� Computer Science Tech� Rep� �

Bell Telephone Laboratories Murray Hill N�J�

Kastens� U� ����� Lifetime analysis for attributes� Acta Informatica �� ��������

Kastens� U� ����� LIGA� A language independent generator for attribute evaluators� Bericht
der Reihe Informatik Nr� �� Universit�at�GH Paderborn Paderborn Germany�

Lee� P� ����� Realistic Compiler Generation� The MIT Press Boston Mass�

Lesk� M� E� ����� LEX � A lexical analyzer generator� Computing Science Tech� Rep� �� Bell
Telephone Laboratories Murray Hill N�J�

R�ohrich� J� ����� Methods for the automatic construction of error correcting parsers� Acta
Informatica ��� 
 �Feb�� ��������

Schmidt� D� A� ����� Denotational Semantics� Allyn and Bacon Newton Mass�

Sites� R� L� ���
� Alpha Architecture Reference Manual� Digital Press Burlington Mass�

Tofte� M� ����� Compiler Generators� EATCS Monographs on Theoretical Computer Science
vol� ��� Springer�Verlag Berlin Germany�

Waite� W� M� ����� The cost of lexical analysis� Softw� Pract� Exper� ��� � �May� ��������

Waite� W� M� and Carter� L� R� ����� The cost of a generated parser� Softw� Pract� Ex�
per� �� � �Mar�� 

��
���

Waite� W� M� Grosch� J� and Schr�oer� F� W� ����� Three compiler speci�cations� GMD�
StudienNr� ��� Gesellschaft f�urMathematik und DatenverarbeitungKarlsruhe Germany�

Received March ����	 revised June ����	 accepted July ����


