
Type Inference for the Spine View of Data

Matthew Roberts
Macquarie University

matthew.roberts@mq.edu.au

Anthony Sloane
Macquarie University

anthony.sloane@mq.edu.au

Abstract
In this work we describe both a type checking and a type infer-
ence algorithm for generic programming using the spine view of
data. The spine view of data is an approach to decomposing data in
functional programming languages that supports generic program-
ming in the style of Scrap Your Boilerplate and Stratego. The spine
view of data has previously been described as a library in a stat-
ically typed language (as in Haskell), as a language feature in a
dynamically typed language (as in Stratego), and as a calculus of
patterns (as in the Pattern Calculus). The contribution of this paper
is a type inference algorithm for the spine view and a type rela-
tion that underlies this inference algorithm. In contrast to all other
typed implementations of the spine view, the type inference algo-
rithm does not require any type annotations to be added in support
of the spine view. This type inference algorithm is an extension of
Hindley-Milner type inference, thus showing how to introduce the
spine view of data as a language feature in any functional program-
ming language based on Hindley-Milner.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—patterns, data types
and structures; F.3.3 [Logics and Meanings of Programs]: Studies
of Program Constructs—functional constructs

Keywords spine view; pattern matching; generic programming;
FCP; type inference

1. Introduction
Generic programming is desirable because it reduces the amount
of boilerplate code required to encode certain programs. Interest in
generic programming has resulted in many implementations with
many subtly different characteristics. In Haskell there are multi-
ple libraries [2, 9, 14–16]. Stratego [19] is a language built to sup-
port generic programming via strategic programming. The bondi
programming language [7] supports generic programming via ad-
vanced pattern matching. Clean has a system of generic program-
ming [1] as an extension to the language that views data as a sum
of products. Although there are many systems of generic program-
ming in many languages, there are none that define a simple inter-
face to the spine view of data [3, 5] and on which we can directly
perform type inference. We provide both of these.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WGP ’14, August 31 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3042-8/14/08. . . $15.00.
http://dx.doi.org/10.1145/2633628.2633629

Defining a type inference algorithm for a language feature is
desirable because it means adding that feature does not force any
further type annotations. In languages like Haskell where type
inference is part of the language, this is clearly very important.
However, in any language it is useful to know that adding a spine
view will not necessitate any further notational overhead. Although
the type annotation overhead of generic programming has proven
small, this is due to the very complex type systems in which it is
typically deployed. In this work we are describing a very small
extension to Hindley-Milner.

A system of generic programming requires three ingredients
[4], a generic view of data, a system for functions that dispatch
on a type argument (which we will refer to as “type indexed func-
tions”), and a run-time representation. All are necessary for generic
programming, but they are orthogonal; one can be considered in
isolation of the others.

In this work we are concerned only with the generic view
of data. There are multiple possible approaches to type indexed
functions and run-time representation, and any of them could be
combined with the work we present here. In fact, in other work, we
have combined the inference algorithm in this paper with a system
for type indexed functions and a run-time representation, resulting
in a full generic programming language called DGEN [18]. All of
the work presented in this paper has been implemented in the DGEN
compiler.

Generic programs are primarily of interest in functional pro-
gramming languages, where the (generalised) algebraic data type
view of data normally requires lots of boilerplate for working with
large data types. Furthermore, it is in statically typed functional lan-
guages where the problem is most acute because dynamically typed
languages often allow run-time solutions to the problem. While
generic programming is not restricted to statically typed functional
languages, it is in this domain that we will consider it.

For languages based on Hindley-Milner type inference there
are two functional language features that are common and well-
understood, but not standard, that must be available for generic pro-
gramming via the spine view to work. We have previously shown
that to allow generic programming with the spine view requires
both polymorphic recursion and higher ranked types [18]. These
features are not difficult to achieve in general, but for type infer-
encing systems they are not available without either type annota-
tions [13, 17] or witnessing constructors [10]. We will show how
to add generic programming to a type inferencing functional lan-
guage that uses witnessing constructors for polymorphic recursion
and higher-ranked types.

In Section 1.1 we formally describe the spine view of data.
In Section 2 we describe FCPς , our language which supports the
spine view of data. Our description includes a formal operational
semantics which is used in Section 3 to describe a sound type
relation for this language. This type relation is simple and novel.
The main contribution of this work is a type inference algorithm for

25

Node

Node

Leaf 4 Leaf

2 Node

Leaf 3 Leaf

Figure 1. The fully applied constructor view of the Tree value
Node (Node Leaf 4 Leaf) 2 (Node Leaf 3 Leaf).

FCPς given in Section 4. Section 5 describes related work, Section
6 gives future directions, and Section 7 concludes the paper.

1.1 The Spine View of Data
We are going to show in this paper how to perform type inference
for a particular generic view of data included in a functional lan-
guage. The view of data we are concerned with is the spine view
of data. The spine view is the mechanism that underlies the “Scrap
your Boilerplate” series of papers [14–16], the pattern calculus [7],
and that has been described explicitly by Hinze et.al. [3, 5]. In
this section we formally describe the spine view, comparing it to
the way we normally consider data in functional programming lan-
guages.

In functional programming languages we can think of a data
constructor as a function that takes its arguments and returns a value
of its data type. If you give that function only some of its arguments,
it remains a function. However, if you give it all its arguments, you
get a data value which can be pattern matched against.

For example, in Haskell, a data type definition

data List a = Cons a (List a) | Nil

introduces two constructors;

Nil :: List a

and

Cons :: a -> List a -> List a

which can be matched against in case statements and function
definitions,

length Nil = 0
length (Cons x xs) = 1 + length xs

It is not possible under this view of data to pattern match
against a partially applied constructor such as Cons 1. We call
this the “fully applied constructor view” of data. Although some
languages which use the fully applied constructor view will accept
a term like Cons 1, that term is not a data value, it is a function
which is waiting for its last argument; i.e. \xs -> Cons 1 xs in
Haskell. According to this view, we can think of data as a tree with
the constructor at the root and its arguments as its children. The
number of children depends on the number of arguments for that
constructor. Consider the following Haskell data type definition:

data Tree a = Node (Tree a) a (Tree a) | Leaf

Tree is a binary tree which stores data in the nodes. To traverse
the data structure we need to know which constructor we are at and
thus how many children it has. This style of traversal is achieved
with standard pattern matching case expressions where one alter-
native is given for each possible constructor. Under this view an
individual function is restricted then to operating over one (perhaps
parameterised) type because we must enumerate its constructors.

In contrast, the spine view of data considers a constructor with
only some of its arguments to be a data value which can be matched
against. Each argument applied to the constructor is reified in the

◦

◦

◦

Node ◦

◦

◦

Node Leaf

4

Leaf

2

◦

◦

◦

Node Leaf

3

Leaf

Figure 2. The spine view of the Tree value Node (Node Leaf 4
Leaf) 2 (Node Leaf 3 Leaf).

structure as a “data application node”. These data applications are
just like function applications, the types work out the same, but run-
time support for them is required. This approach to data is called the
“spine view” because drawing the value with its application nodes
creates a “spine” of applications off which the values applied to the
constructor hang. This is a view of data where all data is a binary
tree of data application nodes.

Figures 1 and 2 show an example data value under the two dif-
ferent views. We assume integers are an infinite number of nullary
constructors. Under the spine view every non-leaf node has two
children, regardless of how many children the constructor is de-
fined to have. This is the central feature of the spine view, internal
nodes are tuples (or pairs) and leaf nodes are nullary constructors.
This means that two cases are enough to pattern match on any data
using the spine view. The spine view presented here is suited to
generic consumers, not generic producers and other work addresses
how to extend it to that domain [3].

In this work we expose the spine view of data with a single
new primitive expression, the is-pair expression. ispair d bind
(x, y) in e else f will scrutinise the value d and if it is an internal
node by the spine view (◦ in Figure 2), will bind x to the left child
and y to the right child, evaluating the in branch. If the scrutinesed
value is a leaf node by the spine view (Node, Leaf, 2, 3, or 4 in
Figure 2) no new binding is made and the result is the else branch.
In the remainder of this paper we describe a simple language that
supports the spine view via an is-pair expression, and show a type
relation and a type inference algorithm for this expression.

The simplest thing you can do with the spine view of data is to
pull an arbitrary value apart and put it back together again

λd.ispair d bind (x, y) in x y else d

This function takes in any value and scruitinises it to see if it is a
constructor applied to something. If it is, x is bound to the construc-
tor and all its arguments but the last, y is bound to the last argument
and the in branch is the result. For example, for the value Node
(Node Leaf 4 Leaf) 2 (Node Leaf 3 Leaf) (shown in Fig-
ure 2), x is bound to Node (Node Leaf 4 Leaf) 2 and y is
bound to Node Leaf 4 Leaf. In the in branch, the constructor
with a missing argument is applied to that argument, which re-
attaches the final argument to its constructor. The end result is that
the initial value is returned. If the scrutinee is not a constructor ap-
plied to something, then it must be a constructor by itself and it
is returned as is. Thus this function should have the type α → α.
Our type inference algorithm is able to infer this type with no type
annotations.

This simple example can be extended to explore some subtleties
of the spine view. If we were to try and write a function which took
in any data (constructor applied to arguments) and stripped its final

26

argument, it might look something like

λd.ispair d bind (x, y) in x else ??

We would hope very much that such a function was severely
restricted and indeed attempting to fill the else branch makes it
clear that there is no general value we can put there which would
work for all types. We can write a version where the else branch
results in something more specific (assuming a constructor K of
the type TK with type K : Int→ Int→ TK)

λd.ispair d bind (x, y) in x else (K 3)

Now we can assign a type to the function, but it can’t be a
polymorphic type. An appropriate type would be TK → Int →
TK . Here we see that under the spine view of data, constructors
which are missing their arguments can exist. The type inference
algorithm we present here will compute this type.

Of course, we must be very careful how we use constructors
which have been stripped of some of their arguments, we must
ensure they are only ever applied to values of the right type. Again,
the type system we present here enforces this, allowing for example
terms such as

(λd.ispair d bind (x, y) in x else (K 3)) (K 2 3) 4

and computing the type TK for it.

1.2 The Missing Inference Algorithm
Amongst the accounts of generic programming using the spine
view there is no system which performs type inference without
annotation on terms. In GHC/Scrap Your Boilerplate for example,
inference is done in the presence of type annotations on terms.
The definition of the underlying combinator gfoldl includes the
following type annotation:

gfoldl :: (forall d b. Data d =>
c (d -> b) -> d -> c b)

-> (forall g. g -> c g)
-> a
-> c a

The terms which encode the spine view, such as gfoldl, re-
quire type annotations and the GHC type inference algorithm is
particularly sophisticated. It is not clear what parts of it need to be
replicated for typing the spine view in particular.

In the bondi programming language an existentially quantified
variable that needs to be accounted for forces the use of “aggressive
assumptions” in the inference algorithm and expressions using the
spine view are also annotated with their types.

Thus two questions arise, “is it even possible to do type infer-
ence on the spine view without annotation of terms?” and “exactly
what additional machinery is required in a type system to support
inference for the spine view?”. It is these two questions which mo-
tivated the research we present here.

1.3 The Key Ideas of this Paper
1.3.1 Generic code can be expressed in a very small calculus
Generic programming is typically demonstrated in quite complex
systems. This is partly because three non-trivial problems need to
be solved to achieve convincing demonstrations of the idea (see
section 2.1). In this paper we build on the work already done
by many people who have shown the kinds of functions we can
write in generic programming and we distill it down to a very
small calculus. This makes it feasible to prove, rather than just
demonstrate, properties of the system, such as the soundness of the
type relation.

1.3.2 The spine view can be encoded with a single expression
There have been a number of expositions of the spine view (see
section 5) but they are all wrapped up in much larger systems. The
most notable examples being those generic programming libraries
for Haskell which rely on GHC extensions, and the pattern calculus
which is a full account of treating functions as data. In this work
we extract just what is needed to support the spine view of data.
We describe a single extension to the lambda calculus (and systems
based thereon), the is-pair expression, which is sufficient to support
the spine view.

1.3.3 Encoding the spine view with an is-pair expression
provides a place to introduce the necessary existentially
quantified variable

The spine view of data generates an existentially quantified type
variable (see Section 3). In other typed accounts of the spine view,
the treatment of this existentially quantified variable is unsuitable
for type inference. In this work we show that by using an is-pair
expression to encode the spine view, we create an artefact in the
language at exactly the point where the existentially quantified
variable needs to be introduced. Further, one branch of the is-pair
expression is the only place that existentially quantified variable
exists, so the scope created by the is-pair expression also matches
with the scope of the existentially quantified type variable. It is this
fact that makes type inference possible.

1.4 The Key Outcomes of this Work
1.4.1 Correction of an error in the FCP type inference

algorithm
Using FCP [10] in the way we do (see Section 1.5) in this work
highlights an error in the original formulation of FCP’s type in-
ference algorithm. We have corrected this error and describe the
correction in this paper.

1.4.2 A type inference algorithm for the spine view of data
We describe a type inference algorithm for the spine view of data
which requires only Hindley-Milner types and is a modest exten-
sion to an existing system, FCP.

1.4.3 A correctness proof for the inference algorithm
The correctness of the work in this paper is shown in two ways.
The first is a working implementation in the DGEN compiler. DGEN
includes an extensive set of example programs demonstrating that
this particular spine view of data can encode a large number of
generic programs and types for them can be inferred.

Most importantly, the correctness of the work in this paper
is demonstrated with proofs of key properties of the systems de-
scribed. We have proofs that:

• The type relation is sound. If you can assign a type to a term
in FCPς , that term can be evaluated one step to a term with the
same type or is a value which has that type.
• The type inference algorithm computes types for terms which

are consistent with the type relation. If a term is given a type σ
by the type inference algorithm, then the type relation holds for
that term having the type σ and vice versa.

1.5 FCP
FCP is a language and associated type system that supports first
class polymorphism. FCP uses Hindley-Milner types (i.e. universal
quantifiers only occur at the top-level) and no type annotations are
required on terms. FCP adds to the lambda calculus constructors in
the style of algebraic data types. These constructors operate exactly
as they do in functional languages like Caml and Haskell. Each

27

constructor is effectively a constructor function which when given
all its arguments, will construct a value of the type in question.
In FCP, as in Caml and Haskell, constructors are annotated with
a type. What FCP adds to other systems with data constructors is
that the type relation and type inference rules are able to work with
nested quantifiers in these constructor types.

For terms, FCP allows only Hindley-Milner types and there are
no annotations. For constructors, nested quantifiers are supported.
This small change is enough to support all of System F. Jones
[10] describes a type-driven algorithm for converting any System
F program to an FCP program and vice versa. Thus it is possible
to use the first-class polymorphism of FCP to support other type
system features not available in Hindley-Milner, such as higher-
ranked functions and polymorphic recursion.

FCP differs from other systems which have been used to support
higher-ranks, polymorphic recursion and first class polymorphism
because it does not have type annotations on terms and does not ex-
tend the Hindley-Milner types. Alternatives which have seen wider
usage such as Peyton Jones et al.’s practical type inference [17] or
Rémy and Le Botlan’s MLF [11], are simpler to program with, but
require type annotations on terms. It is our primary concern to show
that the spine view of data, and in particular the is-pair expression,
does not require any annotations on terms and thus working from a
system which included them would hamper our argument.

The Peyton Jones et. al, Rémy and DeBotlan systems also use
significantly different types to those of Hindley-Milner. One of our
aims in this work is to show a “baseline” for the spine view of data
in functional languages. We want our work to be applicable to as
many different existing (or future) programming languages/com-
pilers as possible. Thus the fact that FCP only uses Hindley-Milner
types further recommends it as a starting point for this work.

2. A Language of the Spine View
We now describe an extended lambda calculus FCPς that supports
the spine view of data. We take as our starting point FCP [10], a
language that includes the fully applied constructor view of data
and that supports inference for first class polymorphism.

Figure 3 shows the syntax for types and terms of FCPς (pro-
nounced FCP-spine). FCPς is FCP with additions for the spine
view of data. Shared with FCP, FCPς has: monotypes for con-
structed values and function types; type variables; type schemes
that are quantified only at the top level; lambda abstractions for
parameterising a function by a variable; function applications for
providing arguments to functions; variables; let expressions which
allow polymorphic definitions; pattern matching lambda abstrac-
tions; constructed values built from a constructor token and its ar-
gument values; and a “pattern matching lambda” expression for
pulling a constructor from a constructed value.

In addition to the above features taken from FCP, FCPς has the
following new expressions to support the spine view of data:

Recursive let expressions Generic programming relies on recur-
sive definitions and in particular needs polymorphic recursion.
Thus FCPς has a recursive let expression where FCP had a non-
recursive let expression.

The is-pair expression The is-pair expression is the expression
that allows us to pattern match against the spine view of data.
Its left branch is used if its discriminator is a tuple/pair and its
right branch is used for nullary constructors.

Constructors take more than one argument FCP restricts con-
structors to arity 1. While this does not invalidate what we are
showing here, it rather disguises it because the whole point of
the spine view is to say that “no matter what the arity of your

σ ::= ∀t.σ type scheme

| τ monotype

τ ::= t type variable

| τ → τ ′ function type

| T τ1 . . . τn datatype, arity(T) = n

e, f ::= x variable

| e f application

| λx.e abstraction

| letrec x = e in f local definition

| K(e, . . . , f) construction

| λ(K x1 . . . xn).e decomposition

| ispair d bind (x, y) then e else f pair discriminator

Figure 3. Type and expression syntax of FCPς

constructor, we can see it as arity 2 using the spine view”. Thus
FCPς has constructors which take multiple arguments.

FCPς achieves inference for higher ranked types and polymor-
phic recursion in the same way as FCP, by requiring them to be
witnessed by constructors that wrap the necessary type. Types are
wrapped with constructors and unwrapped by functions that take
the constructed value and return its contents. Jones shows that this
is enough to encode anything you can encode in System F while
maintaining type inference [10]. The result is that FCP expressions
are somewhat more complex than the equivalent in, for example,
GHC’s type system, but no type annotations are required.

A subset of FCPς expressions are designated as values (v).
These are abstractions, decompositions, and constructors tagging
values.

2.1 Example generic expressions in FCPς
We now give a number of examples of the generic functions you
can write in FCPς . Type inference for FCP (and thus FCPς) oc-
curs in an environment in which various datatypes with associated
constructors have been defined. These can be created by datatype
definitions that introduce a constructor with a function type from
its argument type to the type of the datatype being defined. For ex-
ample, the Haskell code

data Tagged a = Tag a

creates the type Tagged and the constructor Tag with the type
signature:

Tag : a→ Tagged a

We can also define a function to pull the data from a Tagged value:

Tag−1 = λ(Tag d).d

For our examples we need witnessing types for a type ∀α.α → α
and a polymorphic recursive mapping type ∀β.(∀α.α → α) →
β → β. Thus all the examples are written assuming the follow-
ing constructor (Kι, Kµ) and extractor function (K−1

ι , K−1
µ) def-

initions. The constructed types Yι and Yµ are used to witness the
identity type and the polymorphic recursive mapping type respec-

28

tively.

Kι : (∀a.a→ a)→ Yι

Kµ : (∀b.Yι → b→ b)→ Yµ

K−1
ι = λ(Kι x).x

K−1
µ = λ(Kµ x).x

Witnessing higher-ranked types in this way is a straightforward
task, but it tends to obfuscate the meaning of our expressions. All
definitions of higher ranked and polymorphic recursive functions
need to be put into the appropriate constructor and all uses of
these functions need to extracted from those constructors. In other
work [18] we have shown how this system can be converted to one
that uses type annotations, making the expressions much easier to
understand.

Figure 4 defines an FCPς expression that applies a polymorphic
argument to all the values in the data it is passed. In bondi this ex-
pression (aβ) is called apply to all, in Stratego it is all bottom up.1

This function takes a polymorphic function (which would normally
be type-indexed) and applies it to every sub-value in its second ar-
gument. It does this by calling the function on the whole value and
recursively applying itself to each part of the tuple under the spine
view. The recursive expression aβ is polymorphically recursive, it
is applied recursively to two arguments with two different types
in its own body. The first argument to aβ is applied to (possibly)
three different types in the body of the expression and thus must be
witnessed by a Kι. This is a concrete example of why we need to
begin with a system that supports type inference for polymorphic
recursion and higher-ranked functions.

We can define a top-down version (aτ) of this expression using
the spine view,

letrec aτ = Kµ (λf.λd.

ispair ((K−1
ι f) d) bind (x, y)

in ((K−1
µ aτ) f x) ((K

−1
µ aτ) f y)

else (K−1
ι f) d)

We can also write expressions that collect a single value from
a data structure, called generic queries. Figure 5 shows an expres-
sion, qτ , which queries from the top-down. qτ takes as arguments a
polymorphic accumulator function, a start value and data to query.
It recursively calls itself on the left-hand-side of the tuple using the
query value from a recursive call of itself on the right-hand-side of
the tuple as a starting value. The start value of this second recursive
call is generated by calling the accumulator function on the whole
value with the original start value. Again, we require witnessing
constructors and extractors for the some of the types:

Kκ : (∀a.r → a→ r)→ Yκ r

Kξ : Yκ r → b→ r → Yξ b r

K−1
κ = λ(Kκ x).x

K−1
ξ = λ(Kξ x).x

Again we can control the order of the traversal using the spine
view, the following definition is a bottom up query (qβ):

letrec qβ = Kξ (λf.λs.λd.

ispair d bind (x, y)

in (K−1
κ f) ((K−1

ξ qβ) f ((K−1
ξ qβ) f s y) x) d

else (K−1
κ f) s d)

1 Stratego only behaves the same as FCPς in this instance if the strategy
being passed to all bottom up can’t fail.

let gfoldl =λk.λz.λp.

ispair p bind (x, y)

in k (gfoldl k z x) y

else z x

Figure 6. SYB’s gfoldl in FCPς

Terms like aτ , aβ , qτ and qβ can’t be written in FCP, but they
can be written in FCPς . Since we know type inference is possible
for FCP, the question we are answering in this paper is “can we
define type inference for FCPς?” If we can’t then it is the extension
of FCP, i.e. the spine view, which precludes type inference. In fact
we show that the spine view does not preclude type inference.

Also, we know that we can define terms like aτ , aβ , qτ and qβ in
type systems with type annotations and which do type checking/in-
ference in both directions, as in algorithm M [12]. We know this
because of all the GHC-based implementations of these functions.
What we are answering in this paper is “can we perform type in-
ference, with no annotation of terms, for these terms”. The answer,
happily, is yes.

We answer these questions by defining, and proving correct, a
type relation and a type inference algorithm on FCPς .

2.2 Comparison to Scrap Your Boilerplate
FCPς is related to Scrap Your Boilerplate (SYB) [14] quite closely.
We now compare the two and use SYB primitives as a further
example of FCPς . In this section we don’t include the witnessing
constructors and destructors, making the examples simpler to read.

Firstly, both SYB and FCPς use the spine view of data to
see arbitrary data in a uniform way. SYB exposes the spine view
via two non-recursive combinators, gmapQ and gmapT. These non-
recursive combinators are turned into recursive traversal and query
functions by the library functions everywhere and everything.
All of these, however, are built from one underlying combinator;
gfoldl. The ispair operation in FCPς is an alternative to gfoldl
but as we will see, it is more suitable as an extension for an
underlying calculus because it is more flexible than gfoldl. The
ispair expression is the minimal addition required to a core calculus
to achieve what gfoldl achieves in SYB but it is also capable of
directly encoding the other SYB combinators gmapQ, gmapT. To
see this, we will encode all three in FCPς .

Figure 6 shows how FCPς can encode gfoldl. Notice that
one definition of gfoldl will work for all values of all datatypes.
This contrasts with SYB where an instance of this function must
be created, either by the programmer or by the compiler, for each
datatype. This then enforces the need for type classes in the SYB
approach. FCPς is both simpler and requires less compiler machin-
ery to do the same thing.

From here we could build gmapT, gmapQ from gfoldl, but
FCPς allows us an alternative. Figure 7 shows direct encodings of
these functions in FCPς (assuming a list datatype with constructors
C and N and a concatenation function concat).

Directly defining pattern matching against the spine view opens
up the opportunity to mix spine view patterns with fully applied
constructor pattens, as shown by Jay [7].

SYB also includes a system for type indexed functions with
the ext combinators. Type indexed functions allow for specific
behaviour at certain nodes in the value being operated on. The
methods for defining such functions can be combined with this
work, as we have shown in the DGEN compiler where an extension
mechanism very similar to the one used in SYB has been combined

29

letrec aβ = Kµ (λf.λd.

ispair d bind (x, y)

in (K−1
ι f) ((K−1

µ aβ) f x) ((K
−1
µ aβ) f y)

else (K−1
ι f) d)

letrec aβ : ∀b.(∀a.a→ a)→ b→ b =

λf : ∀a.a→ a.λd.

ispair d bind (x, y)

in f ((aβ f x) (aβ f y))

else f d

Figure 4. A generic function similar to Stratego’s all bottom up. On the left is the expression in FCPς , on the right is the same function
written using type annotations in the style of GHC instead of witnessing constructors. The type annotation version is given as a guide to
understanding the FCPς version.

letrec qτ = Kξ (λf.λs.λd.

ispair d bind (x, y) in (K−1
ξ qτ) f ((K−1

ξ qτ) f ((K−1
κ f) s d) y) x

else (K−1
κ f) s d)

letrec qτ : ∀r.∀b.(∀a.r → a→ r)→ r → b→ r =

λf : ∀a.r → a→ r.λs.λd.

ispair d bind (x, y) in qτ f (qτ f (f s d) y) x

else f s d

Figure 5. A generic query. On the left is the expression in FCPς , on the right is the same expression written using type annotations instead
of witnessing constructors.

let gmapT = λf.λd.

ispair d bind (x, y)

in (gmapT f x) (f y))

else x

let gmapQ = λf.λd.

ispair d bind (x, y)

in concat(gmapQ f x,C(f y,N))

else N

Figure 7. Direct encodings of SYB combinators in FCPς

with FCPς and a run-time representation to create a full generic
programming language.

2.3 Operational Semantics of FCPς
Figure 8 provides an operational semantics for FCPς that captures
the normal lambda calculus evaluation style, the expected operation
of pattern matching lambdas, and the spine view of data via ispair
. The evaluation rules make use of a substitution operation in which
[x/e]f denotes the substitution of e for free occurrences of x in f .

The evaluation rules for application, lambda abstraction, and the
E-Con1 rule are shared with FCP. The operation of the recursive
let is specific to FCPς but is entirely standard. The four evaluation
rules added to support the spine view are:

E-Con2 If a constructed value is applied to an expression, the con-
structed value is treated like a function expecting an argument
and it consumes the expression. The result is that the construc-
tor is given the expression as a new final argument. This oper-
ation can only occur on constructors that have previously been
stripped of one of their arguments and this constraint is enforced
by the type system. This is how we “put data back together” ac-
cording to the spine view.

E-IsPair1 If the discriminator of an is-pair expression is not a
value, evaluate it one step.

E-IsPair2 If the discriminator of an is-pair is a value and it is
a constructor with at least one argument attached, bind the
constructor and all arguments but the last to x, bind the last

argument to y and evaluate the left branch. This is how we “pull
data apart” according to the spine view.

E-IsPair3 If the discriminator of an is-pair is a value and it is not
a constructor with at least one argument attached, evaluate the
right branch.

3. Typing the Spine View
Figure 9 describes the typing relation of FCPς . A ` e : τ denotes
the expression e having the type τ given the environment A. An
environment is a set of variable to type scheme bindings. Ax, x : σ
is the environment A where any existing binding for x has been re-
placed by σ. The variable, application, let expression, and lambda
abstraction rules are based on the equivalent rules in FCP but we
use generalisation in specific places rather than have a generalisa-
tion rule. Being specific about generalisation simplifies the proofs
of type system and type inference properties. A type scheme σ is a
generalisation of a type τ , denoted σ � τ , if there is some substi-
tution for the bound variables of σ that gives τ . We can generalise
a type τ to a type scheme with the Gen operation

Gen(τ, A) = ∀α1 . . . αn.τ where {α1 . . . αn} = TV (τ)\TV (A)

While we need a new evaluation rule to deal with putting spine data
back together, we don’t need a special type rule for this because the
normal function application rule T-App works perfectly.

The fact that function application and data application have the
same type rules is a key property of Jay’s pattern calculus [7]. Our
work has validated Jay’s findings.

Specific to FCPς is the T-IsPair rule. How can we determine the
type rule for ispair? Our starting point is the following question

Given d has type D, and assuming d is a tuple, what are the
types of x and y in ispair d bind (x, y)in f else g?

If d is a tuple, it is a constructor applied to some arguments, x is
the constructor with all the arguments but the last, so it could have
the type of a function that if given that last argument, will return
a value of the original type, i.e. argtype → D. y is exactly the
argument that was peeled off, so its type is argtype. However, we
don’t know anything about argtype. Since we only know d has type
D, we can say nothing about its last argument, we only know that
there is one. We might be tempted then to make it a type variable,
giving x the type α → D and y the type α. However, this variable
would be implicitly universally quantified and since x and y will

30

E-App1 e −→ e′

e f −→ e′ f
E-App2 e −→ e′

v e −→ v e′
E-Lam

(λx.e) v −→ [x/v]e

E-LetRec1 e −→ e′

letrec x = e in f −→ letrec x = e′ in f
E-LetRec2

f −→ f ′

letrec x = v in f −→ letrec x = v in f ′

E-LetRec3
x ∈ FV (vf)

letrec x = v in vf −→ letrec x = v in [x/v]vf
E-LetRec4

x /∈ FV (vf)

letrec x = v in vf −→ vf

E-PLam
(λ(K x1, . . . , xn).e)K(v1, . . . , vn) −→ [x1/v1] · · · [xn/vn]e

E-Con1
ej −→ e′j

K(v1, . . . , vj−1, ej , ej+1, . . . , em) −→ K(v1, . . . , vj−1, e
′
j , ej+1, . . . , em)

E-Con2
K(v1, . . . , vm) e −→ K(v1, . . . , vm, e)

E-IsPair1 e −→ e′

ispair e bind (x, y) in f else g −→ ispair e′ bind (x, y) in f else g

E-IsPair2
m ≥ 1

ispair (K(v1, . . . , vm)) bind (x, y) in f else g −→ [x/K(v1, . . . , vm−1), y/vm]f

E-IsPair3
ispairK() bind (x, y) in f else g −→ g

Figure 8. Operational Semantics (e −→ f) of FCPς

T-Var x : σ ∈ A σ � τ
A ` x : τ T-Lam

Ax, x : ρ ` e : τ
A ` λx.e : ρ→ τ

T-App
A ` e : ρ→ τ A ` f : ρ

A ` e f : τ

T-LetRec
Ax, x : σ ` e : τ ′ σ � τ ′ Ax, x : σ ` f : τ

A ` letrec x = e in f : τ

for each K : ((∀α1.τ
′
1), . . . , (∀αn.τ ′n))→ τK

where τK is unique to this K

T-Con1
∀i.(A ` ei : τ ′i) ∀i(αi /∈ TV (A))

A ` K(e1, . . . , en) : τK

T-Con2
∀i ∈ 1 . . .m.(A ` ei : τ ′i) m < n ∀i(αi /∈ TV (A))

A ` K(e1, . . . , em) : τ ′m+1 → (· · · → (τ ′n → τK) · · ·)

T-PLam
Ax1···xn , x1 : [α1/ρ1]τ

′
1, . . . , xn : [αn/ρn]τ

′
n ` e : τe

A ` λ(K(x1, . . . , xn)).e : τK → τe

T-IsPair

A ` e : τe Ax,y, x : α→ τe, y : α ` f : τ
A ` g : τ α /∈ TV (A, τ, τe)

A ` ispair e bind (x, y) in f else g : τ

Figure 9. Type Relation (A ` e : τ) for FCPς

appear separately, we lose the fact that the twoα variables represent
the same something. The solution to this problem is to existentially
quantify this type variable.

Our approach differs from the compound calculus dialect of the
pattern calculus, for example, because the latter separates access to
the left and right parts of the pair without a scope to existentially
quantify the introduced type variable. In FCPς , x and y only occur
in the in branch of an is-pair expression which is the ideal site at
which to introduce a fresh existentially quantified type variable to
constrain the use of these unpaired variables.

The T-IsPair rule in Figure 9 shows the type relation that reflects
this understanding of the is-pair expression. We have proven that

the type system in Figure 9 is sound. The proof is based on the
small-step semantics in Figure 8 and proves both progress (if A `
e : τ then e −→ e′ or e is a value) and preservation (If A ` e : τ
and e −→ e′ then A ` e′ : τ).

3.1 Details of the Proof
We have followed the syntactic approach of Wright and Felleisen
[20] in constructing our proofs thus the proofs of type system
soundness for FCPς are almost a superset of the equivalent proofs
for FCP. For this reason we do not describe the proofs in detail, in-
stead focussing on the is-pair expression and the treatment of par-
tially applied constructors. A version of the full proof (including the
FCP segments) has previously been published in Robert’s doctoral
thesis [18].

Our proof of type system soundness hinges on two main results:

Progress If A ` e : τ then e −→ e′ or e is a value.

Preservation If A ` e : τ and e −→ e′ then A ` e′ : τ

If both progress and preservation are proven then the type system
is sound.

Theorem 3.1 (Progress). IfA ` e : τ then e −→ e′ or e is a value.

Proof. The proof proceeds by induction on the length of the type
deduction for A ` e : τ , with one case for each possible final
deduction rule. Here we only give the cases relating to the spine
view of data.

Case T-ISPAIR If the final deduction rule is T-ISPAIR and A `
(ispair e bind (x, y) in f else g) : τ we have

A ` e : τe (1)

This, with the induction hypothesis gives either e is a value or
e −→ e′. Furthermore, if e is a value, it is either a constructed
value (K(v1, . . . , vn)) or it is not. These possibilities give rise
to the following cases:
e is not a value By e −→ e′ and E-ISPAIR1 we have ispair

e bind (x, y) in f else g −→ ispair e′ bind (x, y) in
f else g.

31

e is a constructed value Say e is the constructed value
K(e1, . . . , en). By E-ISPAIR2 we have
ispair K(v1, . . . , vn) bind (x, y) in f else g −→
[x/K(v1, . . . , vn−1), y/vn]f .

e is a value, but not a constructed value Say e is the non-
constructed value ve. By E-ISPAIR3 we have ispair
ve bind (x, y) in f else g −→ g.

Case T-CON1 If A ` K(e1, . . . , en) : τ , and all ei are values,
then K(e1, . . . , en) is a value. If A ` K(e1, . . . , en) : τ ,
and one of ei is not evaluated (say ej), then by T-CON, A `
ej : τ

′
j . Hence by the induction hypothesis ej −→ e′j and

K(e1, . . . , ej , . . . , en) −→ K(e1, . . . , e
′
j , . . . , en)

Theorem 3.2 (Preservation). If A ` e : τ and e −→ e′ then
A ` e′ : τ

Proof. The proof proceeds by induction on the depth of the evalu-
ation tree, with one case for each possible final reduction e −→ e′.
Here we only give the cases related to the spine view of data.

Case E-ISPAIR2 If ispairK(v1, . . . , vm) bind (x, y) in f else
g −→ [x/K(v1, . . . , vm−1), y/vm]f and A ` ispair
K(v1, . . . , vm) bind (x, y) in f else g : τ , by T-ISPAIR
we have

A ` K(v1, . . . , vm) : τ ′ (2)

Ax,y, x : α→ τ ′, y : α ` v′ : τ (3)

where α is unique. From (2) and T-CON2 we have

∀i ∈ 1 . . .m.(A ` vi : τ ′i) (4)

By (4) and T-CON2 again (this time in the opposite direction)
we have

A ` K(v1, . . . , vm−1) : τ
′
m → τ ′ (5)

Note also that (4) includes the fact that A ` vm : τ ′m. This with
(5), (3) and Lemma 3.1 givesA ` [x/K(v1, . . . , vm−1), y/vm)]f
: τ as required.

Case E-ISPAIR3 If ispair v bind (x, y) in f else g −→ g and
A ` ispair v bind (x, y) in f else g : τ , by T-ISPAIR we
have A ` g : τ as required.

One particularly important lemma used in the proof is

Lemma 3.1 (Existential Instantiation). IfAx,y, x : α→ τ ′, y : α `
e : τ and α /∈ TV (A, τ, τ ′, ρ′) and A ` v′ : ρ′ → τ ′ and
A ` v′′ : ρ′ then A ` [x/v′, y/v′′]e : τ for any ρ′.

Proof. The proof is by induction on the length of the type deduction
for Ax,y, x : α→ τ ′, y : α ` v : τ , with one case for each possible
final deduction rule.

4. Type Inference for the Spine View
In this section we define a type inference algorithm for FCPς . This
type inference algorithm is built from the type relation in Figure 9
and we have developed both a proof of correctness and a working
implementation in the DGEN compiler.2 As noted in Section 2,
full type inference is generally not possible for higher ranks and
polymorphic recursion. FCPς solves this problem by insisting that

2 DGEN implements a variant of the type inference algorithm we present
here. Specifically a type annotation version of FCP is used as the basis of
type inference in DGEN. Crucially, the rules relating to the spine view are
not impacted by this adjustment.

(id) τ
id∼ τ mod V

(var)
α

[α/τ]∼ τ mod V

τ
[α/τ]∼ α mod V

α /∈ V ∪ TV (τ)

(fun)

τ
U∼ ν mod V

Uτ ′
U′
∼ Uν′ mod V

(τ → τ ′)
UU′
∼ (ν → ν′) mod V

Figure 10. Rules for unification. This version of unification re-
duces to normal unification when the set V is empty.

these types be witnessed by a constructor. Figure 11 describes the
type inference algorithm for FCPς . The type inference algorithm,
denoted TA ` τ : σ mod V , takes as input a type τ , a set of fixed-
for-unification variables V , and an environment A. It calculates a
set of substitutions T which are applied to the environment and a
type σ. UT denotes a substitution U applied to a substitution T .
Unification, Figure 4, τ U∼ ρ mod V steps take in two types τ
and ρ and calculate a substitution U that unifies those types. To
enforce fixed-for-unification variables, FCPς uses the unification
algorithm of FCP which keeps track of those variables (as V) in
the environment that must be handled in this way and adds these
variables to the occurs check.

The type rules for variables, abstractions and applications are
taken directly from FCP. The rule for pattern matching lambdas is
derived from the equivalent FCP rule. The variable, abstraction, ap-
plication and let expression rules are equivalent to the correspond-
ing Hindley-Milner rules, but the set of fixed-for-unification vari-
ables is passed around. The constructor rule enforces the require-
ment that a constructor tagging values has the correct type for those
values by unifying them, it also enforces the quantification of the
variable α by ensuring it is unique.

The recursive let rule is specific to FCPς but does not require
anything new because polymorphic recursion is dealt with by wit-
nessing constructors. Inference for normal function application can
deal with putting spine data back together but we describe an en-
tirely novel algorithm for type inference of is-pair expressions. We
can provide type inference rules for the existentially quantified type
variable in an is-pair expression without having to provide a com-
plete implementation of existential typing. Specifically, all we need
to do is ensure that any new existential variables introduced by an
is-pair expression are treated like constants for the purposes of uni-
fication in the body of the is-pair expression, which can already be
done with our unification algorithm by adding that variable to the
set of fixed-for-unification variables.

The type inference rule for is-pair expressions first calculates
the type of the expression being tested (c). This inferred type is
used as the basis for the type of the conditional in the first branch.
We store two types for x and y in the environment when inferring
the type for t. The first (β → τc) is the type for x anywhere in the
body of the branch and the second (β) is the type for y. When we
are inferring the type of the t branch, we ensure that β is treated
as an existential type variable by adding it to the set of fixed-for-
unification variables. In this environment we calculate the type for
the first branch. This is all the hard work done and we use standard
techniques to get the type for the second branch and to unify that
type with the type we got for the first branch.

In this way, Figure 11 describes a type inference algorithm for
a language that supports both the fully applied constructor view
and the spine view of data. This type inference algorithm has been
implemented in the generic programming language DGEN [18], a

32

I-Var
(x : ∀α.τ) ∈ A β new

A `W x : [β/α]τ mod V
I-Abs

T (Ax, x : α) `W e : τ mod V α new

TA `W λx.e : Tα→ τ mod V

I-App

TA `W e : τ mod V T ′TA `W f : τ ′ mod V
T ′τ

U∼ (τ ′ → α) mod V α new

UT ′TA `W e f : Uα mod V
I-LetRec

T (Ax, x : α) `W e : τ mod V Tα
U∼ τ mod V α new

σ = Gen(UTA,Uτ) T ′(UTAx, x : σ) `W f : ρ mod V

T ′UTA `W letrec x = e in f : ρ mod V

I-Con

σK = ∀γ.(∀α1.τ1)→ · · · → (∀αn.τn)→ τ ′ α1, . . . , αn, γ new U = U1 . . . Un T = T1 . . . Tn

∀i ∈ {1, . . . , n}.(TiA `W ei : ρi mod V ρi
Ui∼ τi mod (V ∪ {αi}) αi /∈ TV (UiTiA,Uiτ

′))

UTA `W K (e1, . . . , en) : Uτ
′ mod V

I-PLam
σK = ∀γ.(∀α1.τ1)→ · · · (∀α1.τ1)→ τ ′ α1, . . . αn, γ new T (A{x1, . . . , xn}, x1 : τ1, . . . , xn : τn) `W e : τe mod V

TA `W λ(K x1 · · · xn).e : Tτ → τe mod V

I-IsPair

TA `W c : τc mod V T ′T (A, x : β → τc, y : β) `W t : τt mod (V ∪ {β}) T ′′A `W e : τe mod V
τt

U∼ τe mod V β new β /∈ TV (UTA,Uτt)

UT ′′T ′TA `W ispair c bind (x, y) in t else e : Uτe mod V

Figure 11. Type Inference for FCPς

language that supports both the spine view of data and a method of
creating type indexed functions. The distribution of DGEN contains
many example generic expressions and supports experimenting
with the spine view we have described here.

4.1 Type Inference Correctness
We have proven the soundness and completeness of the type infer-
ence algorithm with respect to the type relation of Figure 9.

Theorem 4.1. If TA `W e : τ mod V then (TA) ` e : τ

Proof. The proof proceeds by induction on the length of the type
inference for TA `W e : τ mod V , with one case for each possible
final step. The proof uses the same structure as the syntactic proof
for type relation soundness and is routine. The fact that β is fixed-
for-unification in I-IsPair and T-IsPair is important in the proof
because it ensures the unification of τe ant τt will generate an
appropriate unification U .

The main source of potential difficulty in this proof (and the
next) is the existentially quantified variable and it’s enforcement by
adding fixed-for-unification variables to the unification algorithm.
However, FCP itself allows existentially quantified variables and
uses the fixed-for-unification variables to perform type inference
for these. Thus everything required for the FCPς proof is already
present in the equivalent proof for FCP.

Theorem 4.2. If (TA) ` e : τ then TA `W e : τ mod V where τ ′ �
τ

Proof. The proof proceeds by induction on the length of the type
inference for A ` e : τ , with one case for each possible final
deduction rule. As above, the proof is a routine application of proof
by structural induction. Side conditions must be used to ensure the
required properties of unification and substitution application.

We have also implemented a variant of type inference algorithm
in the DGEN compiler. DGEN includes; the spine view of data en-
coded via ispair, the fully applied constructor view via case state-
ments and function definitions, type-indexed functions via an ex-
tension primitive, and a run-time which supports both the spine
view and the fully applied constructor view. Because the imple-
mentation in DGEN of the type inference algorithm predates this
presentation of the work, it is not identical to the one we present

here, but it is the same in all matters of substance. The interested
reader can download DGEN and run the type inference algorithm
over large code examples. A number of examples are included
in the DGEN distribution including: generic traversal varying by
traversal order and exit condition, generic show, generic equality,
generic zip, generic map, and generic query [18].

4.2 FCP Correction
The algorithm in Figure 11 includes a correction to the original
FCP algorithm which we now describe.

In the original formulation of FCP [10] the side condition on
the I-Con rule (there called make) is given as α /∈ TV (UTA).
However, the algorithm with this side condition calculates the in-
correct type for some terms. In particular, it will calculate the type
T β′ (where β′ is not bound in the type environment) for the term
K (λx.x) in the context of the constructor K, σK = ∀α.(∀β.β →
α) → T α. We have tracked the error to an implicit constraint on
the type relation which is not explicitly respected in the type infer-
ence algorithm. Adding that α /∈ TV (Uτ ′) to the side condition
of I-Con restores the constraint, correcting the type inference algo-
rithm.

5. Related Work
The Pattern Calculus The spine view is fundamental to the pat-
tern calculus which is a calculus that sets pattern matching as the
guiding principal of programming. We first saw data considered
and pulled apart according to the spine view in Jay’s early work [6]
on the pattern calculus and later work [7] has taken the evaluation
and typing of the spine view of data to great lengths, resulting in
the pure pattern calculus [8].

Our work takes a slightly different approach to the semantics of
the spine view than any of the pattern calculus formulations, but is
largely in line with them. The primary difference is the restriction
of the partially applied constructor to a variable bound inside an
is-pair expression. It is this difference that allows us to formulate a
type inference algorithm for this expression.

The pattern calculus gives a full account of evaluation using
the spine view and extends it to allow dynamic patterns, which
we do not consider here. The pattern calculus also has various
type systems defined upon it. However, type inference for the
pattern calculus is not described in any published work and the only

33

documented version is in the source code of the bondi compiler.
There it uses “aggressive assumptions” [7] to make inference work.
What we present here is a type inference algorithm for a language
very closely related to the pattern calculus, but we fully describe it,
show its derivation, and prove its correctness.
The Spine View The spine view first came to broad attention
through the Scrap Your Boilerplate (SYB) series of papers and
libraries [14–16] although it was not known as such at the time.
Work by Hinze et. al. [3, 5] exposed the spine view that underlies
SYB. Our work is broadly compatible with both these systems
but has a subtly different approach. In both these systems it is
the evaluation mechanics and fitting the system into Haskell’s type
system that are of primary concern. By taking the very smallest and
most fundamental version and exposing it in a simple language we
have added a specific type system for this view, including a type
inference algorithm.
Higher Ranked Type Systems In Section 2.1 we used the equiv-
alence between System F and FCP to write functions that required
higher ranked types but for which types could still be inferred. We
have explained that the FCP approach is equivalent to using type
annotation. There are other modern higher-ranked type systems that
may be amenable to the same type of manipulation to cope with
spine types, such as HMF by Leijen [13] and the practical higher
ranked inference of Peyton Jones et. al. [17]. We expect that there is
nothing in the spine view, or the is-pair expression, that would con-
flict with the type inference in either of these systems. The main
challenge would be ensuring the existentially quantified type vari-
able introduced by the is-pair expression is treated as such.

6. Future Work
DGEN describes a full implementation of generics and this work
was a result of taking one part of DGEN’s implementation and
formalising it. We plan to repeat this process for other aspects,
in particular the run-time representation and the system of type
indexed functions.

Hinze and Löh [3] have shown how the spine view can be
extended to support generic producers, it is our intention to apply
their work to FCPς .

Presently we have an implementation of the ideas in this pa-
per (in DGEN) and separately we have proofs of various properties
of that system. While the simplicity of FCPς makes this approach
tractable, it will quickly become unsupportable if the system is ex-
tended. Furthermore, it is currently not possible to prove properties
of DGEN’s implementation, nor is it possible to execute substantial
examples in FCPς . A machine assisted proof of the properties in
this paper with a system like Coq would allow the implementation
and the theoretical basis to be unified and make future extensions
of the system easier.

7. Conclusion
We have described a small extension of the lambda calculus that
supports the spine view of data. We have given a type checking
relation and described a type inference algorithm for this language
that requires no extra type annotations to support the spine view. In
this way we have created the smallest expression to date of the spine
view of data and showed how it can be included in any functional
programming language based on a Hindley-Milner type system.
The type system has been proven sound and has been implemented
in a compiler for a general purpose language.

References
[1] Artem Alimarine and Rinus Plasmeijer. A Generic Programming

Extension for Clean. In Selected Papers from the 13th International

Workshop on Implementation of Functional Languages, pages 168–
185, London, UK, UK, 2002. Springer-Verlag.

[2] Ralf Hinze. Generics for the masses. Journal of Functional Program-
ming, 16(4-5):451–483, 2006.

[3] Ralf Hinze and Andres Löh. “Scrap your boilerplate” Revolutions.
In In Tarmo Uustalu, editor, Mathematics of Program Construction,
2006, volume 4014 of LNCS, pages 180–208. Springer-Verlag, 2006.

[4] Ralf Hinze and Andres Löh. Generic programming in 3D. Science of
Computer Programming, 2009.

[5] Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your
Boilerplate” Reloaded. In Functional and Logic Programming, pages
13–29. Springer Berlin Heidelberg, 2006.

[6] Barry Jay. The Pattern Calculus. ACM Transactions of Programming
Languages and Systems (TOPLAS), 26(6):911–937, November 2004.

[7] Barry Jay. Pattern Calculus. Computing with Functions and Struc-
tures. Springer, July 2009.

[8] Barry Jay and Delia Kesner. Pure Pattern Calculus. In Programming
Languages and Systems: 15th European Symposium on Programming,
pages 100–114. Springer, 2006.

[9] Johan Jeuring, Andres Löh, and Ralf Hinze. Comparing approaches
to generic programming in Haskell. Technical report, 2006.

[10] Mark Jones. First-class polymorphism with type inference. Proceed-
ings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 483–496, 1997.

[11] Didier Le Botlan and Didier Rémy. MLF: raising ML to the power
of system F. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN
international conference on Functional programming, pages 27–38,
New York, New York, USA, August 2003. ACM Request Permis-
sions.

[12] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-
polymorphic type inference algorithm. ACM Trans. Program. Lang.
Syst., 20(4):707–723, July 1998.

[13] Daan Leijen. HMF: simple type inference for first-class polymor-
phism. In th International Conference on Functional Programming
ICFP, Victoria, BC, Canada, September 2008. ACM.

[14] Simon Peyton Jones and Ralf Lämmel. Scrap your boilerplate: a
practical design pattern for generic programming. In Proceedings
of the ACM SIGPLAN Workshop on Tyupes in Laguage Design and
Implementation TLDI, New Orleans, January 2003. ACM Press.

[15] Simon Peyton Jones and Ralf Lämmel. Scrap more boilerplate: reflec-
tion, zips, and generalised casts. In Proceedings of the ninth ACM SIG-
PLAN international conference on Functional programming, pages
244–255, New York, NY, USA, 2004. ACM.

[16] Simon Peyton Jones and Ralf Lämmel. Scrap your boilerplate with
class: extensible generic functions. In th ACM SIGPLAN International
Conference on Functional Programming, pages 204–215, Tallinn, Es-
tonia, September 2005. ACM.

[17] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. Jour-
nal of Functional Programming, 17(1):1, January 2007.

[18] Matthew Roberts. Compiled Generics for Functional Programming
Languages. PhD thesis, Macquarie University, 2011.

[19] Eelco Visser. Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems in StrategoXT-0.9. In Domain-Specific
Program Generation, pages 216–238. Spinger-Verlag, June 2004.

[20] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1), November 1994.

34

