
A Pure Object-Oriented Embedding of
Attribute Grammars

Anthony M. Sloane1,2

Department of Computing, Macquarie University, Sydney, Australia

Lennart C. L. Kats, Eelco Visser1,3

Software Engineering Research Group, Delft University of Technology, Delft, The Netherlands

Abstract

Attribute grammars are a powerful specification paradigm for many language processing tasks, particularly
semantic analysis of programming languages. Recent attribute grammar systems use dynamic scheduling
algorithms to evaluate attributes by need. In this paper, we show how to remove the need for a generator,
by embedding a dynamic approach in a modern, object-oriented programming language to implement
a small, lightweight attribute grammar library. The Kiama attribution library has similar features to
current generators, including cached, uncached, circular, higher-order and parameterised attributes, and
implements new techniques for dynamic extension and variation of attribute equations. We use the Scala
programming language because of its combination of object-oriented and functional features, support for
domain-specific notations and emphasis on scalability. Unlike generators with specialised notation, Kiama
attribute grammars use standard Scala notations such as pattern-matching functions for equations and
mixins for composition. A performance analysis shows that our approach is practical for realistic language
processing.

Keywords: language processing, compilers, domain-specific languages

1 Introduction

The language processing domain concerns the construction of compilers, inter-

preters, code generators, domain-specific language implementations, refactoring

tools, static code analysers and other similar artefacts. Attribute grammars are

a powerful processing formalism for many tasks within this domain, particularly for

semantic analysis of programming languages [7,22].

1 This research was supported by NWO projects 638.001.610, MoDSE: Model-Driven Software Evolution,
612.063.512, TFA: Transformations for Abstractions, and 040.11.001, Combining Attribute Grammars and
Term Rewriting for Programming Abstractions.
2 Email: Anthony.Sloane@mq.edu.au
3 Email: L.C.L.Kats@tudelft.nl, visser@acm.org

Electronic Notes in Theoretical Computer Science 253 (2010) 205–219

1571-0661/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.08.043

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2010.08.043


Attribute grammars extend context-free grammars with declarative equations

that relate the values of attributes of grammar symbols to each other. Most at-

tribute grammar systems translate the equations into an implementation written in

a general purpose programming language. The translation makes decisions about

attribute evaluation order and storage, removing the need for manual techniques

such as visitors. Therefore, the developer is freed to focus on the language properties

that are represented by the attributes.

In recent years, attribute grammar systems have focused on dynamically sched-

uled evaluation, where the attributes to be evaluated and the evaluation order are

determined at run-time rather than at generation time [14]. LRC [23], JastAdd [11],

UU AG [2], and Silver [25] are prominent examples of this approach. A dynamic

schedule has the advantage that attributes are evaluated at most once, but adds

runtime overhead. In applications such as integrated development environments,

the tradeoff is particularly worthwhile, since not all attributes are needed at all

times.

Nevertheless, these recent systems are based on generators that add to the learn-

ing curve and complicate the development and build processes. We show in this

paper how to integrate a dynamically scheduled attribute grammar approach as a

library into an existing modern, object-oriented language. We use a pure embedding

where the syntax, concepts, expressiveness and libraries of the base language are

used directly [12,18]. The high-level declarative nature of the attribute grammar

formalism is retained and augmented with the flexibility and familiarity of the base

language, both for specification and for implementation of the formalism itself.

This work is part of the Kiama project [24] 4 that is investigating pure embed-

ding of language processing formalisms into the Scala programming language [20].

The main reasons for using Scala are its inclusion of both object-oriented program-

ming and functional programming features, support for domain-specific notations,

emphasis on scalability and interoperability with the Java virtual machine.

Kiama’s attribution library has the same general power as systems such as Jast-

Add [11]. 5 Abstract syntax trees are defined by standard Scala classes with only

minimal augmentation of the class definitions required to prepare them for attribu-

tion. Attribute equations are written as pattern matching functions of abstract

tree nodes. As well as basic synthesised and inherited non-circular attributes,

Kiama currently supports reference attributes [10], higher-order or non-terminal

attributes [26], parameterised attributes [8], and circular attributes that are evalu-

ated to a fixed point [16]. Language extension and modification are achieved using

Scala’s scalability constructs such as traits and mixins. Also, in contrast to previous

systems, attribute definitions can be adapted at run-time to implement dynamic lan-

guage variations. Overall, the performance of Kiama attribute evaluators is similar

to dynamically scheduled evaluators produced by generators.

The rest of the paper is structured as follows. Section 2 provides an introduction

to the features of Kiama’s attribution library by way of two typical examples. The

4 http://plrg.science.mq.edu.au/projects/show/kiama
5 Like JastAdd, Kiama also has facilities for tree rewriting, but they are beyond the scope of this paper.

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219206



Kiama implementation is outlined in Section 3. Section 4 considers how language

extension and separation of concerns can be achieved by leveraging the general Scala

platform. We evaluate the performance of Kiama in Section 5. The paper concludes

with a discussion of our approach in the context of other attribute grammar systems

in Section 6 and concluding remarks in Section 7.

2 Attribute Grammars in Kiama

This section presents a couple of well-known examples to introduce the basic capa-

bilities and style of the Kiama attribution library.

2.1 Repmin

Repmin is a classic problem of tree analysis and transformation, originally employed

to illustrate the use of lazy circular programs in functional programming to eliminate

multiple tree traversals [3]. Repmin is often used as a simple test of attribute

grammar systems. The problem is to take a binary tree with integer leaves and

transform it into a tree with the same structure, but with each leaf value replaced

by the minimum leaf value of the original tree.

Kiama is intended to work as seamlessly as possible with a developer’s non-

Kiama Scala code, including libraries. Attribution is performed on trees made from

standard Scala case class instances. A case class allows instances to be created

without the usual new operator, provides structural equality and supports structure-

based pattern matching. In this sense, case classes provide capabilities that are

similar to algebraic data types found in languages such as Haskell and ML.

Figure 1(a) shows the abstract syntax for Repmin in Scala and a typical problem

instance. Each class inherits from the Attributable Kiama library class to obtain

generic functionality, but otherwise no changes are necessary. The case classes can

have other fields, members, supertypes and so on, without affecting the attribution.

Figure 1(b) shows the definitions of the locmin (local minimum), and globmin

(global minimum) integer-valued attributes and the repmin tree-valued attribute.

(In this example, no attributes of repmin are demanded, but they could be, mak-

ing it a higher-order attribute.) attr is a Kiama library function that takes as

argument the attribute equations defined by cases on the node type. Each resulting

attribute is a function from a node type to the type of the attribute value. Attributes

in modular specifications should be partial functions to allow for composition, so

Kiama constructs the type of an attribute using its own ==> partial function type

constructor instead of the usual Scala (total) function type constructor =>.

The pattern matching abilities of case classes are used in the attribute equations.

Identifiers beginning with a lowercase letter are binding occurrences, whereas those

beginning with an uppercase letter are constants. An underscore pattern matches

anything. A v @ p pattern binds the name v to the value matched by the pattern

p. A guard if boolexp matches if the expression boolexp evaluates to true.

On the right-hand side of an equation, attributes are accessed using a reference

style: the value of attribute a of node n is written n->a. The definition of globmin

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 207



abstract class Tree extends Attributable
case class Pair (left : Tree , right : Tree) extends Tree
case class Leaf (value : Int) extends Tree

// repmin (Pair (Leaf (3), Pair (Leaf (1), Leaf (10))))
// == Pair (Leaf (1), Pair (Leaf (1), Leaf (1)))

(a) Scala abstract syntax for Repmin trees and a simple problem instance.

val locmin : Tree ==> Int =
attr {

case Pair (l, r) => (l->locmin) min (r->locmin)
case Leaf (v) => v

}

val globmin : Tree ==> Int =
attr {

case t if t isRoot => t->locmin
case t => t.parent[Tree]->globmin

}

val repmin : Tree ==> Tree =
attr {

case Pair (l, r) => Pair (l->repmin , r->repmin)
case t @ Leaf (_) => Leaf (t->globmin)

}

(b) Kiama attribute grammar for Repmin.

Fig. 1. A Kiama solution to the Repmin problem.

uses pre-defined structural properties to inspect the tree structure: t isRoot is true

if t is the root of the tree and t.parent is a reference to t’s parent. (Scala allows

the period in a method call o.m to be omitted, so t isRoot is just t.isRoot, and

similarly for the call of the min method.) Note that since the parent has a generic

type, it must be cast to a Tree. Section 6 revisits the typing question.

Overall, Repmin is defined in Kiama in a clear and natural way using mostly

standard Scala features. Specialising an equation for a particular node type is easy

using pattern matching. Defining more complex grouping of attribution is also

straight-forward. For example, the definition of globmin applies at all nodes and

propagates the root value down the tree in a modular fashion, without requiring

voluminous copy rules or special constructs as in some other systems.

2.2 Variable liveness

Attribute grammars were originally designed to express computations on tree struc-

tures. With the addition of remote node references that follow naturally from an

object-oriented representation of attribute grammars, graph-based algorithms can

also be expressed [10]. For instance, references allow attributes to define a control

flow graph. Furthermore, using fixed point iteration to evaluate attributes, attribute

grammars can be used to express data-flow equations [16]. We illustrate these capa-

bilities using a variable liveness computation for a simple imperative language [19].

Figure 2(a) shows a typical variable liveness problem instance, where the In

and Out sets are the live variables reaching or leaving each statement. Figure 2(b)

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219208



In Out

{
y = v {v, w} {v, w, y}
z = y {v, w, y} {v, w}
x = v {v, w} {v, w, x}
while (x) { {v, w, x} {v, w, x}

x = w {v, w} {v, w}
x = v {v, w} {v, w, x}

}
return x {x}

}

(a) A variable liveness problem instance.

type Var = String
abstract class Stm extends Attributable
case class Assign (left : Var , right : Var) extends Stm
case class While (cond : Var , body : Stm) extends Stm
case class If (cond : Var , tru : Stm , fls : Stm) extends Stm
case class Block (stms : Stm*) extends Stm
case class Return (ret : Var) extends Stm
case class Empty () extends Stm

(b) Scala abstract syntax definition for liveness problem.

Fig. 2. The variable liveness problem.

shows the abstract syntax that is used for this example. In the definition of the

Block class, the type Stm* is standard Scala that indicates that the stms field is a

sequence of zero or more statements, implemented by the Scala collection library.

The liveness sets for a statement s are calculated from the variables defined by

s(defines) and the variables used by s(uses) by iterative application of the stan-

dard data flow equations in(s) = uses(s) ∪ (out(s) \ defines(s)) and out(s) =
⋃

x∈succ(s) in(x), where succ(s) denotes the control-flow successors of s.

Figure 3 shows the Kiama definitions of these attributes. The control flow

successor succ is a reference attribute defined in terms of a following attribute

that defines the default linear control flow. following is defined as an inherited

attribute by pattern matching on the parent node, using the convenience function

childAttr. The _* patterns in these definitions match possibly-empty sequences.

The circular Kiama library function used in the definitions of in and out is

like attr except that it also takes an initial value for the attribute and evaluates

until a fixed point is reached. An alternative attribute access notation a (n) has

been used for the liveness sets to emphasise the correspondence with the data flow

equations. In the definition of out , the Scala library method flatMap applies in to

each of the statement’s successors and concatenates the results.

As in the Repmin example, the variable liveness definitions are relatively easy

to follow, use mostly standard Scala, and correspond closely to the mathematical

definitions of the various properties. The small Kiama attribution library interface

is summarised in Figure 4. The next section outlines its implementation.

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 209



val succ : Stm ==> Set[Stm] =
attr {

case If (_, s1, s2) => Set (s1, s2)
case t @ While (_, s) => t->following + s
case Return (_) => Set ()
case Block (s, _*) => Set (s)
case s => s->following

}

val following : Stm ==> Set[Stm] =
childAttr {

case s => {
case t @ While (_, _) => Set (t)
case b @ Block (_*) if s isLast => b->following
case Block (_*) => Set (s.next)
case _ => Set ()

}
}

val uses : Stm ==> Set[String] =
attr {

case If (v, _, _) => Set (v)
case While (v, _) => Set (v)
case Assign (_, v) => Set (v)
case Return (v) => Set (v)
case _ => Set ()

}

val defines : Stm ==> Set[String] =
attr {

case Assign (v, _) => Set (v)
case _ => Set ()

}

val in : Stm ==> Set[String] =
circular (Set[String ]()) {

case s => uses (s) ++ (out (s) -- defines (s))
}

val out : Stm ==> Set[String] =
circular (Set[String ]()) {

case s => (s->succ) flatMap (in)
}

Fig. 3. Kiama attribute grammar for the variable liveness problem.

3 Implementation

The Kiama implementation consists of two main parts: definitions of structural

properties and evaluation mechanisms for the different kinds of attribute. The

implementation of Kiama consists of about 230 lines of Scala code.

3.1 Structural Properties

Case classes to be attributed must inherit from the Attributable trait. Each case

class is automatically an instance of Scala’s Product trait that provides generic

access to its constructor fields. The code that initialises an Attributable instance

uses the Product interface to set the structural properties, such as parent, and, for

nodes in sequences, next and prev.

A complication is that the attribution library must coexist with Scala code that

processes the same data structures. In particular, nodes might contain sequences

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219210



Attributable Supertype of all node types.

Structural attributes of all nodes

t.parent : Attributable Parent of t.
t.isRoot : Boolean Is t the root of the tree?

Structural attributes of nodes occurring in sequences of nodes of type T

t.prev, t.next : T Siblings of t.
t.isFirst, t.isLast : Boolean Is t the first or last node?

t.index : Int Number of siblings before t.

For node type T, user-defined attributes of type U

attr (f : T => U) : T ==> U Basic attribute defined by f.
circular (init : U) (f : T => U) : T ==> U Circular attribute defined by f

with initial value init.
childAttr (f : T => Attributable ==> U) : T ==> U Attribute defined by matching

on parent.

paramAttr (f : S => T ==> U) : S => T ==> U Attribute with parameter of

type S.

Access attribute a of node n

n->a Reference style.

a (n) Functional style.

Fig. 4. Summary of the Kiama attribution interface.

case class Upper (a : Lower , b : Lower*, c : Int ,
d : Option[Lower]) extends Attributable

case class Lower (...) extends Attributable

Fig. 5. The Kiama parent-child relation compared to structure containment.

and optional fields represented by Scala values of type Seq[T] and Option[T].

(Option[T] is analogous to Haskell’s Maybe a type, having values of None or

Some (t), for some value t of type T.) Fields that are not attributable might

also be present, most notably primitive values.

To address these issues, Kiama makes a distinction between the containment

relation between a node and its fields as defined by the case class declaration, and

the parent-child relation that relates an Attributable node to its Attributable

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 211



class CachedAttribute[T,U] (f : T ==> U) extends (T ==> U) {
val memo = new IdentityHashMap[T,Option[U]]

def apply (t : t) : U =
memo.get (t) match {

case None => memo (t) = None
val u = f (t)
memo (t) = Some (u)
u

case Some (Some (u)) => u
case Some (None) => error ("Cycle detected")

}

def isDefinedAt (t : T) : Boolean = f isDefinedAt t
}

Fig. 6. The CachedAttribute class.

children. Both of these relations are useful in attribute equations. Figure 5 shows an

example where an Upper node contains four fields: one required Lower, a sequence

of zero or more Lower nodes, an integer and an optional Lower. The Upper node

therefore has five Attributable children and those nodes have the Upper node as

their parent. Most accesses to nodes in equations are performed via fields or the

parent property, but Kiama also provides an iterator so that all Attributable

children can be accessed in a generic way.

3.2 Attributes

Attributes defined by attr are implemented by the CachedAttribute class that

we focus on here. Since attribute equations are cached and are not evaluated until

they are needed, the evaluation method is equivalent to those used in early attribute

grammar systems [14] and, more recently, in JastAdd [11].

Figure 6 shows the definition of the CachedAttribute class. The type param-

eters T and U denote the type of the nodes to which this attribute applies and the

type of the attribute value, respectively. The value parameter f is the user-specified

(partial) function that defines the attribute equations. Since CachedAttribute is

a sub-class of the partial function type T ==> U and Scala converts a (n) into

a.apply (n), this implementation presents a convenient functional interface to the

attribute value. The reference notation n->a is a simple alias.

The partial function implementing an attribute must define two methods: apply,

that “runs” the defining equations on the given node and returns the value, and

isDefinedAt, that provides information about the function’s domain. For a cached

attribute, apply uses a local hash map to memoise the attribute value for the node t.

A marker value None is used to detect when the method calls itself, so that an error

can be reported. The isDefinedAt method simply delegates to the isDefinedAt

of the attribute equations.

Other kinds of attributes are defined by similar classes with the same inter-

face. For example, uncached attributes are a simple variant. circular uses a

CircularAttribute class that provides a functional interface to the fixed-point

evaluation algorithms of Magnusson and Hedin [16].

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219212



It is sometimes useful to have attributes that are parameterised by other values.

For example, JastAdd specifications often use this style in name analysis where a

lookup attribute is parameterised by the name being sought [8]. Parameterised

attributes are created in Kiama using the paramAttr function (Figure 4). For

example, an attribute for looking up a name n can be defined in Kiama as follows.
val lookup : String => Attributable ==> Decl =

paramAttr {
n => {

case ... // cases for lookups at different nodes
}

}

4 Language Extensions and Separation of Concerns

Many attribute grammar systems allow for a high degree of separation of concerns,

allowing different equations for an attribute or production to be defined across dif-

ferent modules. Typically, this modularity is implemented as a purely syntactic

feature, joining together all equations for an attribute before compilation, and con-

sidering the entire, merged specification as a whole. (This is notably not the case

for first-class attribute grammars [5], where attributes are first-class citizens and

can be manipulated in the language.)

While other attribute grammar systems often use a general-purpose language

for the expressions in attribute equations (e.g., Haskell in UU AG [2], Java in

JastAdd), they provide their own module systems on top of that language. Kiama

relies purely on Scala for the modular specification of attribute grammars. As a

modern object-oriented programming language aimed at high-level abstraction for

building modular frameworks with a rich, often functional interface, Scala offers an

impressive toolbox of modularization features, most notably traits and mixins.

4.1 Static Separation of Concerns Using Traits

Flexible static combination of attribution modules can be achieved using Scala traits

to define components and performing mixin composition to combine them [21]. For

example, we can decompose the variable liveness problem of Section 2.2 into three

components dealing with control flow, variables, and the liveness computation itself.

The first two of these can be abstracted by interfaces defined by traits.

trait ControlFlow {
val succ : Stm ==> Set[Stm]

}

trait Variables {
val uses : Stm ==> Set[String]
val defines : Stm ==> Set[String]

}

An implementation of the liveness module can use a Scala self type [21] to declare

that it must be mixed in with implementations of the ControlFlow and Variables

interfaces.

trait LivenessImpl extends Liveness {
self : Liveness with Variables with ControlFlow =>
...

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 213



import kiama.attribution.DynamicAttribution._

case class Foreach (cond : Var , body : Stm) extends Stm

object DataflowForeach {
Dataflow.succ += {

case t @ Foreach (_, body) => following (t) + body }
}

Dataflow.following +=
childAttr {

_ => {
case t @ Foreach(_, body) => following (t) + body

}
}

}
}

Fig. 7. Dynamic attribute grammar extension.

... definitions of in and out as before

...
}

Finally, an implementation of the dataflow solution can be formed by mixing

together implementations of the three modules.
object Dataflow extends LivenessImpl with VariablesImpl

with ControlFlowImpl

This approach allows modules to be composed with alternative implementations

without being changed or even recompiled because the types ensure that the com-

position is valid.

4.2 Dynamically Extensible Attribute Definitions

Kiama uses functions to implement attributes, represented by CachedAttribute

and other types. In this subsection, we illustrate the flexibility of this approach by

adding a new dynamic form of attributes. Kiama’s DynamicAttribution module

defines attributes using the interfaces shown earlier and adds the += operator to

enable an attribute definition to be dynamically extended. Therefore, attribute

grammar specifications can be separately compiled, dynamically loaded into the

Java Virtual Machine, and added to an existing definition. This makes it possible

to distribute language extensions in the form of binary plugins.

The extension operator is illustrated by Figure 7 that extends the dataflow ex-

ample of Section 2.2 by adding a Foreach construct. The body of DataFlowForeach

is a set of statements; the extension is only activated if these are executed. Each

invocation of += on an attribute adds a new definition to an internally maintained

list of partial functions for the attribute. Inspired by the Disposable pattern [17],

we introduce a method similar to the using statement in languages such as C#.

With this technique, we can activate the extension as follows:

using (DataflowForeach) {
... // evaluate attributes using the extension

}

The extension is only active in the scope of the block of code, and any defini-

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219214



tions added are removed after it completes. The using method is implemented as

follows: 6

def using[T] (attributeInitializer : => AnyRef) (block : => T) =
try {

use (attributeInitializer)
block

} finally {
endUse (attributeInitializer)

}

That is, it uses two helper methods to first activate and keep track of new definitions,

then evaluates the block, and finally removes the definitions again. Therefore, using

allows extensions to be combined easily in a disciplined, scoped fashion.

5 Evaluation

We evaluate the performance of attribute evaluation in Kiama by a comparison to

a handwritten Scala implementation and to a generated Java attribute evaluator.

For the former, we specify attributes as regular methods in the AST classes, and

perform caching by hand, at a cost of modularity and boilerplate code. For the

latter, we compare to JastAdd, which, like Kiama, uses the Java platform and

supports reference and circular attributes [11]. JastAdd has been successfully used

to implement a full-featured Java 1.5 compiler that offers performance that can

compete with handwritten implementations [9].

As a test case, we use the JastAdd example PicoJava specification from [27],

which has 18 abstract syntax productions and 10 attributes to perform name and

type analysis. We tested evaluation performance for relatively large, generated

input programs. Since PicoJava only supports class definitions and not methods,

our input classes contain 150 nested class definitions.

Figure 8 shows our benchmark results. The LOC column shows the number of

lines of non-commented code to implement the AST and attribute grammar in each

specification. The timings show the amount of time used for 100 runs evaluating the

errors attribute that uses the other attributes to check for naming problems and

cycles in the inheritance hierarchies. We first constructed a list of 100 inputs and

evaluated the attribute for each input. In a second series of tests, we constructed

only a single input in each run, ensuring that older inputs could be garbage collected,

minimizing memory overhead of the benchmark. We used this approach because

the input classes are particularly large for JastAdd which uses fields for caching. In

both cases, we only timed the attribute evaluation process, ignoring input/output

and tree creation overhead

The original JastAdd specification only used caching on selected attributes,

which for our test cases appeared to lead to a decrease in performance. Thus,

we created a variation where all attributes were cached, and finally a further vari-

ation that disabled JastAdd’s use of rewrite rules. The Kiama implementation is

a direct translation of this last variant. The results indicate that Kiama, while

not using code generation and having had little performance optimisation, provides

6 A parameter type => T denotes a call-by-name parameter.

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 215



LOC List of classes Single classes
Java: JastAdd 252 4010 ms 3459 ms
Java: JastAdd (full caching) 252 1767 ms 952 ms
Java: JastAdd (full caching, no rewrites) 243 1260 ms 860 ms
Scala: Kiama (full caching, no rewrites) 262 1889 ms 2435 ms
Scala: Handwritten 424 862 ms 543 ms

Fig. 8. Lines of non-commented code (LOC) in the benchmark specifications and times to evaluate the
errors attribute of a large PicoJava input program.

competitive performance to JastAdd and adds only limited overhead to a handwrit-

ten specification. Of course, like JastAdd, Kiama offers superior modularity and a

more concise notation than is possible with the handwritten implementation.

6 Discussion and Related Work

This section briefly compares the approach taken to develop the Kiama attribution

library with generator-based systems that feature a dynamic evaluation approach.

We are not aware of another attribute grammar system that uses pure embedding.

In many ways, Kiama has been inspired by the JastAdd [11] system and the

features provided are similar. JastAdd provides an object-oriented variation of

attribute grammars, supporting inheritance in their definition and references as

attribute values [11]. Like JastAdd, Kiama is based on the Java platform, but

makes use of the Scala language rather than a pre-processor approach.

The JastAdd approach to attribute evaluation might be characterised as “roll

your own” laziness for Java. Scala does have lazy values, but to use them in Kiama

would require attribute definitions to reside in the abstract syntax classes, which

goes against modularity. Therefore we use the same general approach as JastAdd,

but cache the values in attribute objects rather than in the tree nodes. This design

implies some space overhead but we haven’t observed it to be a problem in practice.

A number of systems use lazy functional languages to define evaluators as circu-

lar programs [13]. The most prominent recent projects are LRC [23], Silver [25], the

UU AG system [2] and first-class attribute grammars [5]. Built-in laziness means

that explicit scheduling of attributes is avoided. Fully circular attributes are not

possible by default but a form of circularity can be obtained [1]. In contrast, Kiama’s

approach is more work to implement but more flexible because we have lightweight,

fine-grained control over the mechanisms used to evaluate attributes while retaining

the property that schedules are computed implicitly.

All of the systems cited use a special-purpose front-end or pre-processor to trans-

late their attribute grammars into an implementation language, Java in the case of

JastAdd and Haskell for the other systems. Since attribute equations in these sys-

tems are largely written in the syntax of the target language, a fairly high level of

integration is achieved. Kiama removes the generator completely. While a custom

input language is often desirable, the benefits can be outweighed by the simplicity

and light-weight nature of an approach that doesn’t need a generator with its asso-

ciated learning curve and influence on the build process. Scala’s expressive nature

limits the sacrifices that must be made when making this tradeoff.

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219216



The first-class attribute grammars work [5] gets the closest to a pure embed-

ding since attributes are first-class citizens that can be combined using combinator

functions. As such, it shows similarities to our dynamically extensible attributes.

However, the syntax used is supported by a pre-processor, rather than using pure

Haskell. Based on the Haskell type checker, first-class attribute grammars prevent

errors where the use of an attribute does not match its type. Errors due to cyclic

dependencies or a mismatch between attribute equations and grammar productions

are not reported. In earlier work, De Moor et al [6] used a Rémy-style record calculus

to detect errors of the latter category, but this was found to be too restrictive.

One advantage of a generator-based approach is the ability to check the attribute

grammar for correctness at generation time. For example, completeness and well-

formedness checks [7] give confidence that the generated evaluator is not incomplete.

In Kiama, precise checking of this kind is not always possible, particularly if syntax

extensibility is desired. A Scala case class can be marked sealed which means that

it cannot be extended outside the current module. When compiling a pattern match

against a sealed class, the Scala compiler can emit warnings if the patterns are not

complete, giving Kiama a form of completeness checking.

Kiama’s encoding of the abstract syntax grammar in case classes also removes

the possibility of some grammar-based checks. For example, in the Repmin example

of Section 2.1 a run-time type check was necessary to ensure that the parent of a tree

node was also a tree node. This check would not be necessary in a grammar-based

generator, since the relationships between non-terminals could be determined stat-

ically. In practice, however, checks of this kind are not needed often and therefore

do not outweigh the advantages of using standard Scala case classes as Kiama’s tree

representation.

As mentioned in Section 4, many attribute grammar systems allow the grammar

to be written as separate “aspects” that are automatically “woven” together at

generation time. In contrast, Kiama requires explicit descriptions of composition in

the specification. While automatic composition of aspects is certainly convenient,

in a general-purpose language setting where explicit composition is the norm its

absence is not really felt.

7 Conclusion and Future Work

Dynamically-scheduled attribute grammars are a powerful language processing

paradigm that has been the focus of many generator-based implementations. In

most cases, a general purpose language is used to express attribute computations.

The Kiama attribution library removes the generation step by using Scala to write

the whole attribute grammar. The resulting system is lightweight and easy to un-

derstand, yet capable of competing in expressivity and performance with JastAdd,

a mature generator-based system which uses a similar evaluation method.

The Scala features used by Kiama are present in one form or another in other

languages, although usually not together. Scala’s powerful expression language

and first-class functions are well complemented by object-oriented features for state

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 217



encapsulation and modularity. More than any other feature, Kiama benefits most

from Scala’s pattern-matching anonymous functions that support the clean and

natural attribute equation notation.

Kiama is in active development. For example, we are adding collection at-

tributes [4,15]. Scala’s ability to extend traits that define values (as opposed to

methods) is being improved, which we plan to use to provide better support for

defining a single attribute in multiple modules. The general question of analysis for

embedded languages is also interesting for Kiama since it could lead to a solution

that is both modular and provides better static completeness guarantees.

References

[1] Augusteijn, A., “Functional programming, program transformations and compiler construction,” Ph.D.
thesis, Department of Computing Science, Eindhoven University of Technology, The Netherlands (1993).

[2] Baars, A., D. Swierstra and A. Löh, UU AG System User Manual, Department of Computer Science,
Utrecht University, September (2003).

[3] Bird, R., Using circular programs to eliminate multiple traversals of data, Acta Informatica 21 (1984),
pp. 239–250.

[4] Boyland, J. T., Remote attribute grammars, J. ACM 52 (2005), pp. 627–687.

[5] de Moor, O., K. Backhouse and S. Swierstra, First-class attribute grammars, Informatica 24 (2000),
pp. 329–341.

[6] de Moor, O., S. Peyton-Jones and E. Van Wyk, Aspect-oriented compilers, in: Proceedings of
International Symposium on Generative and Component-based Software Engineering, LNCS 1799
(1999), pp. 121–133.

[7] Deransart, P., M. Jourdan and B. Lorho, “Attribute Grammars: Definitions, Systems and Bibliography,”
Lecture Notes in Computer Science 323, Springer-Verlag, Berlin, Germany, 1988.

[8] Ekman, T. and G. Hedin, Modular name analysis for Java using JastAdd, in: International Summer
School in Generative and Transformational Techniques in Software Engineering, Lecture Notes in
Computer Science 4143 (2006), pp. 422–436.

[9] Ekman, T. and G. Hedin, The JastAdd extensible Java compiler, in: Proceedings of the 22nd ACM
SIGPLAN conference on Object-oriented programming systems and applications (OOPSLA’07) (2007),
pp. 1–18.

[10] Hedin, G., Reference Attributed Grammars, Informatica (Slovenia) 24 (2000), pp. 301–317.

[11] Hedin, G. and E. Magnusson, JastAdd: an aspect-oriented compiler construction system, Sci. Comput.
Program. 47 (2003), pp. 37–58.

[12] Hudak, P., Modular domain specific languages and tools, in: Proceedings of the 5th International
Conference on Software Reuse (1998), pp. 134–142.

[13] Johnsson, T., Attribute grammars as a functional programming paradigm, in: Proceedings of the
Conference on Functional Programming Languages and Computer Architecture (1987), pp. 154–173.

[14] Jourdan, M., An optimal-time recursive evaluator for attribute grammars, in: Proceedings of the
International Symposium on Programming, Springer, 1984, pp. 167–178.

[15] Magnusson, E., T. Ekman and G. Hedin, Extending attribute grammars with collection attributes -
evaluation and applications, in: Proceedings of the Seventh IEEE International Working Conference
on Source Code Analysis and Manipulation (2007).

[16] Magnusson, E. and G. Hedin, Circular Reference Attributed Grammars-their Evaluation and
Applications, Electronic Notes in Theoretical Computer Science 82 (2003), pp. 532–554.

[17] Mariani, R., Garbage collector basics and performance hints, MSDN Library. http://msdn.microsoft.
com/en-us/library/ms973837.aspx (2003).

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219218

http://msdn.microsoft.com/en-us/library/ms973837.aspx
http://msdn.microsoft.com/en-us/library/ms973837.aspx


[18] Mernik, M., J. Heering and A. M. Sloane, When and how to develop domain-specific languages,
Computing Surveys 37 (2005), pp. 316–344.

[19] Nilsson-Nyman, E., G. Hedin, E. Magnusson and T. Ekman, Declarative intraprocedural flow analysis of
Java source code, in: Proceedings of the 8th Workshop on Language Descriptions, Tool and Applications,
2008.

[20] Odersky, M., L. Spoon and B. Venners, “Programming in Scala,” Artima Press, 2008.

[21] Odersky, M. and M. Zenger, Scalable component abstractions, in: Proceedings of the 20th annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages and Applications, 2005,
pp. 41–57.

[22] Paakki, J., Attribute grammar paradigms—a high-level methodology in language implementation, ACM
Computing Surveys 27 (1995), pp. 196–255.

[23] Saraiva, J., “Purely Functional Implementation of Attribute Grammars,” Ph.D. thesis, Department of
Computer Science, Utrecht University, The Netherlands (1999).

[24] Sloane, A. M., Experiences with domain-specific language embedding in Scala, in: Proceedings of the
2nd International Workshop on Domain-Specific Program Development, 2008.

[25] Van Wyk, E., D. Bodin, J. Gao and L. Krishnan, Silver: an Extensible Attribute Grammar System,
Electronic Notes in Theoretical Computer Science (ENTCS) 203 (2008), pp. 103–116.

[26] Vogt, H. H., S. D. Swierstra and M. F. Kuiper, Higher order attribute grammars, in: PLDI
’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design and
Implementation (1989), pp. 131–145.

[27] Picojava checker, http://jastadd.cs.lth.se/examples/PicoJava/.

A.M. Sloane et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 205–219 219

http://jastadd.cs.lth.se/examples/PicoJava/

	Introduction
	Attribute Grammars in Kiama
	Repmin
	Variable liveness

	Implementation
	Structural Properties
	Attributes

	Language Extensions and Separation of Concerns
	Static Separation of Concerns Using Traits
	Dynamically Extensible Attribute Definitions

	Evaluation
	Discussion and Related Work
	Conclusion and Future Work
	References

