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Abstract. Attribute grammars enable complex algorithms to be defined on tree
and graph structures by declarative equations. An understanding of how the equa-
tions cooperate is necessary to gain a proper understanding of an algorithm de-
fined by an attribute grammar. Existing attribute grammar tools and libraries pro-
vide little assistance with understanding the behaviour of an attribute evaluator.
To do better, we need a way to summarise behaviour in terms of attributes, their
values, their relationships, and the structures that are being attributed. A simple
approach to program profiling is presented that models program execution as a
hierarchy of domain-specific profile records. An abstract event for attribute evalu-
ation is defined and evaluators are modified to collect event instances at run-time
and assemble the model. A flexible report writer summarises the event instances
along both intrinsic and derived dimensions, including ones defined by the de-
veloper. Selecting appropriate dimensions produces reports that expose complex
properties of evaluator behaviour in a convenient way. The approach is illustrated
and evaluated using the profiler we have built for the Kiama language processing
library. We show that the method is both useful and practical.

1 Introduction

Attribute grammars promote a view of tree and graph decoration based on declarative
equations defined on context-free grammar productions [18]. An attribute is defined by
equations that specify its value at a node N as a function of constant values, the values
of other attributes of N, and the values of attributes of nodes that are reachable from N.
Provided that sufficient equations are defined to cover any context in which the node can
occur, we obtain a declarative specification of an algorithm that can be used to compute
the attribute of any such node. This approach to computation on structures has been
shown to be extremely powerful. Recent applications that use attribute grammars heav-
ily are XML integrity validation [2], protocol normalization [3], Java compilation [4],
image processing [7], and genotype-phenotype mapping [11].

Any single attribute equation is usually fairly simple, but its effect is intricately
intertwined with that of many other equations. The value of an attribute A is ultimately
determined not just by A’s equations, but by the equations of any attribute on which A’s
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equations transitively depend. Thus, the computations that cooperate to compute a value
of A are potentially dispersed throughout the attribute grammar. This dispersal means
that it is non-trivial to determine what an attribute value is or even how an attribute is
calculated just by looking at the equations.

Powerful extensions of the original attribute grammar formalism make this problem
even worse. Equations in the original conception of attribute grammars can only refer
to attributes of symbols that occur in the context-free grammar production on which the
equation is defined. In higher-order and reference attribute grammars the value of an at-
tribute can itself be a reference to a node upon which attributes can be evaluated [15, 27].
This extension is particularly useful when defining context-sensitive properties such as
name binding or programmer-defined operator precedence. This power comes at a price,
however, because it means that more parts of the grammar are in play when we are try-
ing to understand a particular attribute and how it is computed.

The situation is complicated even more by the fact that many modern attribute gram-
mar systems use a dynamically-scheduled evaluation strategy, which precludes accurate
static analysis. Some classes of attribute grammar submit to static dependence analy-
sis that enables evaluation strategies to be computed in advance of running the eval-
uator [12]. One can imagine tools based on this static analysis that would assist with
understanding the evaluation process. More recently, however, attribute grammar tools
and libraries have mostly used an approach where the evaluation strategy is determined
at run-time [9, 10, 24, 26]. This approach admits more grammars than does a static ap-
proach, some algorithms are easier to express, and features such as higher-order and
reference attributes are easier to support. However, a dynamically-scheduled approach
also means that an accurate static analysis is not possible. Instead, dynamic analysis
support is necessary since evaluation will be influenced by the attribute values, which
will in turn be influenced by the input.

We therefore favour dynamic methods for understanding our attribute evaluators.
In this paper we focus on a profile-based approach where data is collected at run-time
and summarised to reveal relationships between different aspects of the execution. An
option is to profile the code that implements the attribute evaluator. The resulting pro-
files are unsatisfactory, however, as they operate at a much lower level than the attribute
grammar and require the developer to know a great deal about the implementation ap-
proach. Instead, we develop a method where both data collection and profile reports are
in terms of an abstract model of evaluation that is based on arbitrary data dimensions.
For example, the developer can ask for a profile that shows run-time and evaluation
counts for each attribute that was evaluated during the run. Multi-dimensional reports
show how dimensions are related to each other. For example, a report that summarises
first along the attribute dimension and then along the subject (tree node) dimension
gives insight into the places in the structure where the attributes were evaluated.

Specifically, the contributions of the paper are as follows.

1. The design of a general profiling framework based around generating a hierarchi-
cal model of program execution from domain-specific program events which have
properties in arbitrary dimensions (Section 3.1).

2. The design of a profile reporting scheme that is independent of the event types
produced by a program and of the dimensions possessed by the events (Section 3.2).
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3. An implementation of the profiling framework and reporting scheme for attribute
evaluators that use our Kiama language processing library [24] (Section 3.3).

4. An evaluation of the performance of the Kiama profiler that shows that it is suffi-
cient for interactive use on large inputs (Section 3.4).

5. Examples of the approach and demonstration of its utility. We use the PicoJava
Java subset and the Oberon-0 variant of Oberon (Sections 2 and Section 4).

The paper concludes with a review of related work (Section 5) and an examination of
directions for future work (Section 6).

Code and documentation for our implementation of the profiling framework can be
found at http://bitbucket.org/inkytonik/dsprofile. Kiama can be obtained
from http://kiama.googlecode.com.

2 Understanding Attribute Evaluation

To place our discussion on a concrete footing, we first illustrate the difficulties of at-
tribute grammar understanding using the problem of name analysis for Java-like lan-
guages. In this section, we describe part of a standard attribute grammar solution for
this problem and discuss how profiling can help us understand this attribute grammar.

2.1 PicoJava

The attribution we consider performs name analysis for the PicoJava language. This
attribution was originally written as an illustration of reference attributes in the JastAdd
system [8]. The Kiama distribution contains a fairly direct translation of the JastAdd
attribute grammar. We present the attribute equations in a simplified system-neutral
notation, however, since the problems of understanding the grammar and the profiling
solution are independent of the details of the specific attribute grammar notation.

PicoJava contains declarations and uses of Java-like classes and fields, but omits
most of the expression, statement and method complexity of Java. The left side of Fig-
ure 1 shows a PicoJava program consisting of a block with a declaration of class A.
Class A contains two nested classes: AA and AA’s sub-class BB. Statements are limited to
simple assignments between named objects which are either fields of the current object
or qualified accesses to fields of other objects.

The problem that is solved by the attribute grammar is to check the use of all iden-
tifiers. For example, the uses of x in the a.x and b.x expressions are legal because of
the declaration of the x field in AA and the inheritance relationship between AA and BB.
However, the use of y in b.y is illegal since BB and AA declare no y field, even though
there is a y field in the enclosing class A.

The attribute grammar operates on an abstract syntax tree representation of a pro-
gram. The right side of Figure 1 shows the tree for the program on the left side. A pro-
gram consists of a block containing a list of the top-level declarations and statements.
Declarations are either of variables or of classes. A variable declaration (VarDecl)
specifies the name of the variable and its type. Class declarations (ClassDecl) specify
the class name and an optional name of the superclass. The superclass component is
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either Some(c), if the superclass is c, or None, if there is no declared superclass. Uses
of variable or class names are Use constructs. Classes contain a recursive block for their
local declarations and statements. There is no limit to the nesting of class declarations.

2.2 Name analysis for PicoJava

The attribute grammar that implements name analysis for PicoJava defines one main
attribute decl whose value is the declaration corresponding to a particular access of a
name. decl is a reference attribute whose value is the actual VarDecl or ClassDecl
node in the tree. decl is a synthesized attribute, meaning that it is defined in all produc-
tions that define the structure of accesses.

attribute decl : Access => Decl
Use: a:Access ::= u:Use a.decl = u.lookup (u.name)
Dot: a:Access ::= Access u:Use a.decl = u.decl

We first declare the type of the attribute. The decl attribute is defined on Access nodes
and its type is Decl, the common superclass of VarDecl and ClassDecl. The arrow
=> appeals to an intuition that attributes are functions from nodes to values.

PicoJava accesses come in two varieties: a direct use of a single name (Use) or a
field reference with respect to a nested object access (a Dot containing an Access and a
Use). In the attribute grammar the two varieties are represented by the two context-free
grammar abstract syntax productions shown. Productions are written as the production
name, a colon, then the grammar rule. The two parts of a grammar rule are separated by
::=. The symbols in the grammar rule can be given names so that they can be referred

{
class A {
int y;
AA a;
y = a.x;
class AA {
int x;
}
class BB extends AA {
BB b;
b.y = b.x;
}

}
}

Program (
Block (List (
ClassDecl ("A", None (),
Block (List (
VarDecl (Use ("int"), "y"),
VarDecl (Use ("AA"), "a"),
AssignStmt (
Use ("y"),
Dot (Use ("a"), Use ("x"))),

ClassDecl ("AA", None (),
Block (List (
VarDecl (Use ("int"), "x")))),

ClassDecl ("BB", Some (Use ("AA")),
Block (List (
VarDecl (Use ("BB"), "b"),
AssignStmt (
Dot (Use ("b"), Use ("y")),
Dot (Use ("b"), Use ("x"))))))))))))

Fig. 1. A PicoJava program (left) and its abstract syntax tree (right).
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to by the attribute equations. For example, in the first production the Access symbol is
given the name a.

Since there are two productions that define the Access symbol, we need two def-
initions for the decl attribute. Each production has an equation that describes how to
compute the attribute in an actual tree construct that was derived by that production.
Each equation has the form attribute = expression. References to attributes of particu-
lar symbols are written using a “dot” notation on the left-hand side of an equation and
within the right-hand side expression (e.g., a.decl). This notation is also used to ac-
cess intrinsic properties of tree nodes that are already in the tree when attribution begins
(e.g., the u.name field of a Use).

In order to describe how to compute an attribute value, an attribute equation can
refer to any symbols of the associated production to obtain data values from attributes
or intrinsic properties. Expressions can use any facility of the host environment to com-
pute with these values. The overall effect of the decl equations is that the relevant
declaration is determined by evaluating the lookup attribute at the rightmost name use
in the access. For example, when evaluating decl for the expression a.b.c, which is
represented by the tree Dot(Use(a),Dot(Use(b),Use(c))), we will evaluate decl
for b.c, decl for c and, finally, lookup("c") at the Use(c) node.

2.3 Name lookup

The lookup attribute implements a search to find the declaration that matches a par-
ticular name. The value of n.lookup(s) is a reference to the node that represents the
declaration of s when viewed from the scope represented by the node n, or a reference
to a special “unknown declaration” value if no such node can be found.

attribute lookup (String) : Any => Decl

We indicate that the attribute can be evaluated at any node using the Any common
super-class of all tree node classes.

lookup is a parameterised attribute, since it depends on the name being sought. It is
also an inherited attribute since its value will be determined by the context surrounding
the node where it is evaluated, not by the inner structure of that node.

Use: a:Access ::= u:Use u.lookup(name) = a.lookup(name)
Dot: Access ::= a:Access u:Use u.lookup(name) =

a.decl.type.remoteLookup(name)

The first of the two cases is when lookup is evaluated at a Use node. This corre-
sponds to the use of an unqualified name, so we just continue the search at the parent
node to search in the current scope. The other case is when the use is qualified, in which
case it will occur as the child of a Dot node. We need to find the declaration of the object
which is being accessed, get its type and perform a remote lookup there.

We omit the definitions of the type and remoteLookup attributes since those de-
tails are not necessary for our discussion. type returns a reference to a node represent-
ing the class type from a declaration. remoteLookup looks for a name in a class type
from the perspective of a client of that type.
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The remaining cases for lookup propagate requests coming from Use nodes to the
appropriate parts of the tree and to trigger searches in blocks and super-classes.

...: ... ::= ... b:Block ...
if (b.contains(name))

b.lookup(name) = b.localLookup(name)

...: ... ::= ... c:ClassDecl ...
if (c.superClass != null) && (c.superClass.contains(name))

c.lookup(name) = c.superClass.remoteLookup(name)

...: p ::= ... n ...
n.lookup(name) = p.lookup(name)

In these productions, we use an ellipsis ... to indicate a part of a production whose
structure is not important. Some of the equations are conditional in that they only apply
if a Boolean condition is true. If the current node is a block and that block contains a
definition of the name we are looking for, we perform a local lookup in that block to find
the declaration. Otherwise, if we have reached a class declaration, that class has a super-
class, and the super-class contains a definition of the name, then we perform a remote
lookup in that class. The final case covers all other circumstances by just propagating
the search to the parent node. We are guaranteed to eventually reach at least a block
since all programs consist of one.

2.4 Understanding PicoJava name analysis

Name analysis attribution for PicoJava is a canonical example of reference attribute
grammars [8]. The equations are not lengthy, but their operation is still quite hard to
understand. Some of the difficulty is due to the inherent complexity of the problem
being solved. The tasks of name and type analysis for a language like PicoJava are
intertwined. For example, to lookup a name in the body of a class, we may need to
search the superclass type, which involves performing name analysis on the name that
appears in the superclass position of the class declaration, and so on, while avoiding
problems such as cycles in the inheritance chain. (The latter check is hidden in the
definition of the superClass attribute.)

Given this inherent complexity, it is somewhat surprising that the definitions are not
longer than they are. The main reason for their brevity is the power of the dynamically-
scheduled attribute grammar formalism to abstract away tree traversal details. When
we are writing our equations, we can reason about how declarations, global, local and
remote lookups, and types relate to each other, without having to work out a particular
tree traversal that evaluates the attributes in the correct order. The attributes are eval-
uated when their values are first demanded and caching means that we don’t need to
worry about which particular use of an attribute asks for it first. In contrast, a solution
based on tree traversals implemented by visitors, for example, would have to explicitly
plan which attributes should be evaluated at which time. Developing such a plan is a
non-trivial task for this problem.
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202 ms total time
47 ms profiled time (23.5%)

206 profile records

By attribute:

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
41 88.0 11 24.7 30 63.3 27 13.1 decl
30 63.7 10 22.8 19 40.9 32 15.5 lookup
15 32.9 9 19.0 6 13.9 19 9.2 localLookup
5 10.6 0 1.8 4 8.8 18 8.7 unknownDecl
4 8.9 4 8.9 0 0.0 33 16.0 declarationOf
3 7.9 2 4.8 1 3.1 7 3.4 remoteLookup
3 6.5 2 4.9 0 1.6 2 1.0 isSubtypeOf

By type for lookup:

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
33 60.8 7 13.2 26 47.7 12 5.8 Use
17 31.8 1 3.2 15 28.6 4 1.9 VarDecl
4 8.3 2 4.2 2 4.1 5 2.4 Block
2 3.7 0 1.1 1 2.6 4 1.9 ClassDecl
1 2.2 0 0.7 0 1.5 3 1.5 Dot
1 2.1 0 0.8 0 1.3 4 1.9 AssignStmt

Fig. 2. Extracts of profiles produced when the PicoJava name analyser processes the program in
Figure 1: attribute dimension (top); attribute and node type dimensions (bottom).

It is not possible to completely ignore tree traversal. When we are developing and
debugging the equations, we need help to understand how they function. It is not enough
to just look at each equation by itself, since the effect is achieved by a combination of
many equations. Having some information about what happens at run-time can reveal
much about how the attribute grammar works. As a simple example, if we knew that our
name analyser never evaluated the superClass attribute when processing the program
in Figure 1, we would know that the equations are not correctly implementing our intent.

2.5 Profiling PicoJava name analysis

The rest of this paper describes a method for producing run-time profiles of the execu-
tion of attribute evaluators. Before we present the detail, we give a couple of examples
to illustrate useful profiles of the PicoJava name analysis attribute grammar.

The simplest profile we can imagine is one that shows us which attributes are eval-
uated during a run. The top profile in Figure 2 shows an attribute profile of the PicoJava
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name analyser that was produced as it processed the program in Figure 1.1 The first part
of the profile gives the total run-time and the time that is accounted for by the profiled
attributes. 206 attribute instances were evaluated in this run. The table summarises the
run-time by apportioning it to the attributes. Each row shows the total time taken by the
evaluation of the attribute and the portions attributable to the equations of the attribute
itself (Self) and of the attributes that those equations used (Desc for “descendants”).
The final data columns show the number of times each attribute was evaluated.

The profile shows that the decl attribute and the attributes it uses consume the vast
majority of the time, closely followed by lookup and localLookup. The profile reveals
a number of areas where further investigation might be warranted. The localLookup
attribute consumes almost a third of the time which seems excessive. We might investi-
gate whether replacing a linear search by a hashed lookup would improve performance.
Also, the unknownDecl attribute is used to return a special object to represent the case
where a declaration cannot be found. It is worrying that computing this special object
consumes ten percent of the time.

The top profile of Figure 2 shows just a single profile dimension: the attribute that
was evaluated. Our profiles can summarise execution across more than one dimension to
reveal more detail. For example, we might want to know the types of the nodes at which
the lookup attribute was evaluated. The bottom profile in Figure 2 shows the lookup
part of a multi-dimensional profile using the attribute and node type dimensions. In
this table the rows summarise a particular combination of the lookup attribute and
node type. For example, the first line summarises the cases where the lookup attribute
was evaluated at Use nodes. Since the tree in Figure 1 contains three Dot nodes, it is
comforting to see from the fifth line of the table that we looked up names three times at
such nodes.

Profiles such as those shown in Figure 2 reveal a lot about the execution of an
attribute evaluator in a form that is easy to absorb. Varying our choice of dimension
means that we can tailor the profiles to the particular investigation that we are carrying
out. We now consider how these sorts of profiles are produced in detail, before looking
at more complex examples.

3 Attribute Grammar Profiling

Our approach to producing profiles such as those shown in the last section is to in-
strument programs to generate domain-specific events while they run. The events are
grouped to form a record-based model of the execution in domain-specific terms. Re-
ports are generated from the model by grouping records along developer-specified
dimensions. We consider only profiling for attribute grammars in this paper, but the
method is general. By varying the events that are generated and the dimensions that are
available, profilers can be built for any domain.

Section 3.1 describes the data collection method and the record-based model of
execution. Section 3.2 explains how the model is used to produce reports. The imple-

1 Elapsed time is collected in nanosecond units, but is presented in the profiles as milliseconds,
so there may be some rounding errors.
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mentation of the approach for our Kiama language processing library is discussed in
Section 3.3 and its performance is analysed in Section 3.4.

3.1 Data collection and execution modelling

The data collection approach is based on a simple event model. We distinguish between
Start events that signal the beginning of some program activity and Finish events
that signal the end of an activity. We assume that the program can be modified so that
Start and Finish events will be generated at appropriate times.

Each event captures the event kind (Start or Finish), the time at which it oc-
curred, the domain-specific type of the event, and a collection of arbitrary data items
associated with the event instance. Each data item is tagged with a unique dimension.
The dimensions that an event has at generation time are its intrinsic dimensions, to
differentiate them from derived dimensions that are calculated later.

In the attribute grammar case, a single attribute evaluated event type is sufficient.
We assume that a Start instance of this event type is generated just before the eval-
uation of an attribute begins, and that a corresponding Finish instance is generated
just after evaluation of an attribute ends. Attribute evaluation events have the following
intrinsic dimensions:

– attribute: the attribute that was evaluated,
– subject: the node at which the attribute was evaluated,
– parameter: the value of the attribute’s parameter (if any),
– value: the value that was calculated by the attribute’s equations, and
– cached: whether the value was calculated or came from the attribute’s cache.

The attribute, subject and parameter dimensions must be present in both the Start
and Finish events. We call this subset of the intrinsic dimensions the identity dimen-
sions. They are used by the profiler to recognise when a Finish event matches a Start
event that was seen earlier. The value and cached dimensions are present only in the
Finish event since their values are available only after the evaluation has been com-
pleted.

After the execution is completed, we collect the events to create a list of profile
records that describe the execution. When we see a Finish event we match it with
the corresponding Start event by comparing the identity dimensions. Each matching
Start-Finish pair is combined to form a single profile record. A record contains the
event type, the time taken between the occurrence of the Start event and the occurrence
of the Finish event, and the union of all of the intrinsic dimensions of the two events.

We also require that the events are generated in a last-in-first-out manner so that
we can automatically construct a hierarchical model of execution. In other words, if
we see a Finish event, it must be the case that the most recently seen Start event
that does not yet have a corresponding Finish event is the one that corresponds to the
new Finish event. If this condition holds, we can regard the records that are created
between a Start event and its corresponding Finish event as the descendants of the
new profile record. This hierarchical relationship is used to derive dimensions that relate
records to each other to summarise attribute dependencies (Section 4.4).
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Kind When Attribute Subject Param Value Cached
Start 4 decl Node 1
Start 4 lookup Node 1 “a”
Start 5 lookup Node 2 “a”
Finish 6 lookup Node 2 “a” Node 3 false
Finish 7 lookup Node 1 “a” Node 3 false
Finish 10 decl Node 1 Node 3 false
Start 14 decl Node 1
Finish 15 decl Node 1 Node 3 true

Record Time Attribute Subject Param Value Cached Descendants
1 1 lookup Node 2 “a” Node 3 false
2 3 lookup Node 1 “a” Node 3 false 1
3 6 decl Node 1 Node 3 false 2
4 1 decl Node 1 Node 3 true

Fig. 3. Start and finish events from a program run (top) and the profile records that summarise the
attribute evaluations signalled by the events (bottom).

To make this discussion more concrete, consider the execution of the PicoJava name
analysis attribute evaluator. Among the events generated by this evaluator will be some
that document the evaluation of the decl and lookup attributes. A possible execution
results in the events shown in the top table of Figure 3. This trace excerpt describes
four attribute evaluations. The first Start event marks the start at time step four of the
evaluation of the decl attribute at Node 1. That evaluation requires an evaluation of the
lookup attribute with parameter "a" at Node 1, and again at Node 2, which yields a
value of Node 3, which we assume is the declaration node for a. The first evaluation of
the decl attribute at Node 1 finishes at time step ten and did not use the decl attribute
cache. If the value of the decl attribute at Node 1 is subsequently demanded again,
represented by the final two events, its value will be obtained much more quickly using
the attribute cache.

Four profile records will be created, one for each attribute evaluation (bottom table
of Figure 3). For example, record three tells us that the first evaluation of decl took
a total of six time units and required the evaluation represented by record two. Record
two in turn took three time units and required the evaluation represented by record one.

3.2 Report generation

The record list produced by the data collection process is a domain-specific model of
the execution. A report is produced from this model on the basis of one or more report
dimensions. The report generation process proceeds by considering the records one-by-
one and allocating them to report buckets according to their report dimension values.
All of the records with the same report dimension values end up in the same bucket and
their execution time is accumulated. The descendant information allows us to allocate
the elapsed time to either the attribute evaluation represented by a record (self) or to the

SLE 2012– Anthony M. Sloane 33



other evaluations demanded by that evaluation (descendants). When all of the buckets
have been assembled, a table is printed where the rows represent the different buckets
and are sorted in decreasing order or execution time.

For example, if we choose the attribute dimension and summarise the data from the
records in Figure 3, we get the following profile report.

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
7 100.0 3 42.9 4 57.1 2 50.0 decl
4 57.1 4 57.1 0 0.0 2 50.0 lookup

Since we are using the attribute dimension we get two buckets, one for each of the two
attributes that we have recorded.

Multi-dimensional reports are produced by an analogous process. We first report
on the basis of the first dimension. Then each bucket from the first dimension table
is further summarised according to the second dimension. The process continues until
there are no more dimensions to consider.

3.3 Implementation

The profiles presented in this paper were collected using an implementation we built as
a library in the Scala language. Profiles can be generated from code written in any Java
Virtual Machine language but specific support is provided for Scala and Java.

We manually instrumented our Kiama language processing library [23, 24], which
is written in Scala, to use the profiling library to collect information about attribute
evaluations. We augmented the attribute grammar evaluation code of Kiama to generate
events as described above. While the new code had to be manually inserted, its total
size is very small: only ten new method calls are needed in a module of more than five
hundred lines. These calls produce the start and finish events. Their parameters
are the event dimension names and values. This profiling support will be part of an
upcoming release of our Kiama language processing library.

Users of Kiama need to only add one call to run their code under profiler control and
to generate a report when their code is finished. All other instrumentation is in Kiama
so the application code is not further affected.

An important implementation decision we made was to not encode the available
dimensions and the types of their values into the profiling framework. A dimension is
just represented by a string and a dimension value can be anything. Including more type
information would enable a greater level of safety in the event generation and recording
code. However, it would tie the framework to particular events and their dimensions.
Adding new ones would require updating the interfaces or a more complex event repre-
sentation with generic access to typed dimension values. Our approach is much simpler
and is extremely flexible. Instrumentation code is one line at each event generation site.
New events and dimensions can be added without recompiling the profiler.

Around 100 lines of support code in Kiama implements derived dimensions and
access to the names of the attributes. In fact, the last of these is the only non-trivial part
of the implementation. Unfortunately, Scala does not have full reflection yet so we are
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not able to easily recover the attribute names. As a work-around, we currently require
the attributes to be defined as lazy values and some relatively fragile code examines
the run-time stack to determine the names when the attributes are constructed. We plan
to replace this code with a more robust implementation and allow non-lazy attribute
definitions when proper reflection is available in the 2.10 release of Scala.

A profiling library component of less than 300 lines of code implements event cap-
ture, record representation, and report generation. The current implementation stores
profile records as instances of a custom class. A generic format such as XML or JSON
could easily be used instead and might be beneficial if the data was to be exported. As
it stands, the event data is only used internally by the library, so this generality is not
needed. We have not used any form of compression to reduce the space needed to store
the profile records, since it has not been necessary for the test cases we have tried. It
is possible that a need for space optimisation will be found when very large attribute
grammars are profiled. If space usage becomes a serious problem, an on-the-fly ap-
proach could be the solution, where aggregation is performed as events are generated
rather than at the end of the execution.

Events are time-stamped using the JVM java.lang.System.nanoTime method
which has nanosecond precision. As in all profiling systems, the measured times vary
from run to run depending on the machine load, but the relative times are stable. Precise
nanosecond times are unlikely to be very useful since they present too much detail, so
the profiler reports times in millisecond units.

Profiles that use intrinsic dimensions can be generated directly from the profile
records. Derived dimensions can be added by overriding the default implementation
of a library method that looks up dimension values. The method is given the dimension
name and a reference to the profile record. The default implementation simply looks up
the name in the record’s dimension collection. An overriding implementation can return
any value it likes. Sections 4.3 and 4.4 contain examples of derived dimension profiles.

The display of aggregated values can also be customised. By default, the profiler
uses the standard Java toString method to obtain a string representation of a value.
That implementation can be replaced by arbitrary code. For example, we could display
subject trees using a pretty-printer instead of using the default representation. Since
these sorts of values can take up a significant amount of space, they are unlikely to fit in
the profile report tables. The report writer automatically detects when the value strings
will not fit. Each such value is allocated a reference number which is used in the table.
The actual value string is printed with the reference number below the table.

3.4 Performance

The performance of a profiling library is not important in production, but can make a
difference to the efficiency of the development process. To explore the performance of
our implementation, we conducted some experiments using an attribute grammar that
is much bigger than the PicoJava one. The Kiama Oberon-0 example was developed for
the tool challenge associated with the 2011 Workshop on Language Descriptions, Tools
and Applications. Oberon-0 is the imperative language subset of the Oberon family of
languages and was originally described by Wirth [28]. The challenge compiler parses
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and analyses Oberon-0 programs, then translates correct ones into equivalent pretty-
printed C code. Our test case was compiling all of our fifty-two Oberon-0 test programs
in a single run of the compiler. None of these programs is very large, but the compiler
performs more than 32,000 evaluations of fourteen attributes while processing these
files, so it is a serious test of the profiling system.

Running the Oberon-0 compiler on this test with profiling completely disabled takes
about five to six seconds of elapsed time. Adding the event generation code to the
library, but still with no report generation, doesn’t make a difference that is noticeable
when running from the command line. We also modified the program to collect the run-
time for just the core compiler driver, thereby removing the time for other operations
such as class loading. We ran all of the Oberon-0 tests in a single run as before, repeating
the run ten times initially to warm up the virtual machine. Then we ran twenty-four tests,
discarded both the slowest two and the fastest two results to remove any outliers, and
averaged over the remaining twenty measurements. The results showed that the event
generation by itself slows the core of the compiler down by a factor of about 1.4. While
this is a significant difference, the command-line experiment shows that the slowdown
is swamped by the time taken by other operations performed by the program. Thus, we
believe that the instrumentation is practical for gathering data from large test runs.

We also investigated the time taken to produce profile reports. Producing a profile
for the attribute dimension increases the run-time from around eight seconds with pro-
filing turned on but no report generation, to about twelve seconds with report generation
as well. Adding a second subject dimension increases the total time to over twenty-two
seconds. Most of this time is taken by printing the many tree fragments, which illus-
trates that report generation time is highly dependent on the chosen dimensions. We
have not performed any optimisation of the core of the report generator so it is likely
that some improvement could be obtained. Nevertheless, our experiments show that the
current performance is practical for typical interactive uses during development.

4 More complex profiles

To further demonstrate the power of our profiling approach and to provide a context for
more detailed discussion, we conclude the core of the paper by considering more com-
plex profiles. In particular, we consider different dimensions that improve our ability
to understand the execution of our attribute evaluators. The profiles are produced from
executions of the PicoJava and Oberon-0 compilers.

4.1 Parameterised attributes

Parameterised attributes are a powerful feature of modern attribute grammar systems,
but their operation can be opaque since the parameter values are not part of the equa-
tions. Seeing the parameter values that are used can greatly increase understanding and
reveal problems. A profile along the attribute and parameter dimensions shows us ex-
actly which parameters are being used and how often. For example, the PicoJava name
analyser yields the following profile for the attribute localLookup. Parameter values
are optional, so they are shown as either Some(v), representing the value v, or None,
which denotes that a parameter was not used.
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Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
8 22.1 4 11.2 4 11.0 5 2.4 Some(int)
3 9.7 2 5.9 1 3.8 1 0.5 Some($unknown)
0 1.4 0 1.0 0 0.4 3 1.5 Some(BB)
0 0.8 0 0.7 0 0.1 3 1.5 Some(y)
0 0.7 0 0.6 0 0.1 3 1.5 Some(x)
0 0.5 0 0.5 0 0.0 2 1.0 Some(AA)
0 0.2 0 0.2 0 0.0 1 0.5 Some(a)
0 0.2 0 0.2 0 0.0 1 0.5 Some(b)

Quite a lot of time is spent looking up the pre-defined type name int and something
called $unknown. The latter is only looked up once and still manages to take more
time than the lookups of “real” names. An examination of the source code triggered by
this profile reveals that $unknown is the name given to the unknown declaration. As we
observed in Section 2.5, some improvements could be made to the handling of unknown
declarations and apparently this profile shows another symptom. We would also hope
to reduce the time spent looking up pre-defined names.

4.2 Structured attributes

Kiama has structured attributes that are groups of attributes that are associated with
each other in some way. One kind of structured attribute is a chain, which is inspired
by a similar construct in the LIGA attribute grammar system [13]. A chain abstracts a
pattern of attribution that threads a value in a depth-first left-to-right fashion throughout
a tree. The idea is that the system provides the default threading behaviour and the
attribute grammar writer can customise the equations at various places in the tree to
update the chain value. Kiama chains are implemented by a pair of attributes: one to
calculate the value of the chain that comes in to a node from its parent, and one to
calculate the value that goes back out of the sub-tree to the parent. The developer can
provide functions to transform the incoming value as it heads into a sub-tree or as it
leaves the sub-tree.

The Oberon-0 attribute grammar uses a chain to encode an environment that prop-
agates symbol information from declarations to uses. Declarations add information to
the chain and uses of names access the chain to look up information. This approach
contrasts with the name analysis approach used in the PicoJava example where parame-
terised attributes are used to search for the declaration information to bring it to the uses
where it is needed. Profiles can help us compare these two approaches to this problem.
We can profile the PicoJava name analyser along the attribute and parameter dimen-
sions to assess the overhead of looking up each name individually. We can profile the
environment attribute in the Oberon-0 compiler to find out the costs of propagating it.

4.3 Derived dimensions

All of the profiles we have seen so far use the intrinsic dimensions whose values are
already present in profile records. A powerful extension is to produce profiles based on

SLE 2012– Anthony M. Sloane 37



dimensions that are derived from the profile records. Derived dimensions summarise
the execution in any way we like, including in ways that are specific to the application.

For example, suppose that we are interested in knowing where the attribute evalu-
ations occur within the tree. We might wish to know whether particular attributes are
evaluated more at boundary nodes (the root and the leaves) or at the other (inner) nodes.
The profile records do not have an intrinsic dimension that gives us this information di-
rectly, but we can calculate this new location dimension from the subject dimension.

A simple implementation of the location dimension suffices to return one of the
strings “Root”, “Inner” or “Leaf”, depending on the location of the subject tree node
within the tree. Here is a typical profile that results from using the attribute dimension
with this new location dimension. We show the profile for the input half of the environ-
ment chain from the Oberon-0 attribute grammar.

Total Total Self Self Desc Desc Count Count
ms % ms % ms % %
185 26.5 52 7.5 132 18.9 3237 10.0 Leaf
133 19.0 44 6.3 89 12.8 5455 16.8 Inner
58 8.3 58 8.3 0 0.0 81 0.3 Root

The profile shows that this particular attribute is evaluated quite a lot at the leaves,
which we would expect since the names reside at the leaves and attribution associated
with them is the primary client of the environment. Evaluation at inner nodes is nec-
essary to transport the environment from the declarations where it is established to the
leaves. The many evaluations at the root are more of a mystery, since we would expect to
only determine an incoming environment at the root once for each input program, since
that value just contains pre-defined names. (Recall that there are fifty-two programs in
the full Oberon-0 test suite.) Examination of the compiler implementation shows that
attributed trees are transformed and the transformed trees are sometimes re-attributed,
so this repeated evaluation at a root location also makes sense. Some of the programs
only have one root evaluation as they are erroneous and are not translated.

Location is a very simple derived dimension but the idea can be taken as far as nec-
essary to reveal just those aspects of the execution needed to diagnose a problem or to
expose the way that some attribution works. A particularly powerful application of de-
rived dimensions is custom views of attribute values. We can create dimensions to show
the values aggregated according to any useful criteria. For example, an attribute might
hold a pretty-printed version of some part of the tree. We could aggregate evaluations of
that attribute along a dimension that calculates the number of lines in the pretty-printed
text. A profile along this derived dimension would allow us to analyse the impact of the
complexity of the pretty-printing task on the run-time.

4.4 Attribute dependencies

It is sometimes desirable to examine the dynamic dependencies that are induced by the
application of the attribute equations to a particular input. Dynamic dependencies reveal
exactly how the attributes depend on each other in a particular execution. In contrast,
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static dependencies that can be obtained by examining the equations themselves are an
over-approximation of the dependencies that are actually used.

Kiama’s depends-on derived dimension aggregates attribute evaluations according
to the attributes on which they directly depend.2 For example, here is a profile along
the attribute and depends-on dimensions for the idntype attribute from the Oberon-
0 compiler. The idntype attribute holds the type of an identifier use. (We omit the
timings from this table and just show the bucket counts to save space.)

754 2.3 IdnUse(@).entity, NamedType(?).deftype
155 0.5 IdnUse(@).entity
13 0.0 IdnUse(@).entity, IntExp(?).tipe
22 0.1 IdnUse(@).entity, RecordTypeDef(?).deftype
4 0.0 IdnUse(@).entity, AddExp(?).tipe

24 0.1 IdnUse(@).entity, ArrayTypeDef(?).deftype
1 0.0 IdnUse(@).entity, DivExp(?).tipe
1 0.0 IdnUse(@).entity, IdnExp(?).tipe

Each row of this table reports a particular pattern of dependence. For instance, the
first line says that in 754 cases the attribute depended on the entity attribute of an
IdnUse node and the deftype attribute of a NamedType node. The parenthesised char-
acters after the node types indicate where the given node was in the tree relative to at-
tribute evaluation node. An at-sign means at the same node and a question mark means
at a node that is not directly connected to the attribute evaluation node.3

The profile reveals a number of things about the calculation of the idntype at-
tribute. Firstly, each case involves the entity attribute of the same node, which makes
sense since the entity is to what the identifier refers. We find the type in different ways
depending on the kind of entity the name represents. Secondly, on 155 occasions the at-
tribute does not depend on any other attributes because the type can be obtained directly
from the entity. In the AddExp, DivExp and IdnExp cases the type is obtained from an
expression, which will happen if the named entity is a defined constant. Finally, if the
name refers to some other kind of entity, its type will be determined from the type of its
declaration which will be a ArrayTypeDef.

Profiles of this kind are particularly useful for diagnosing issues with the distribution
of test cases. They are a convenient way to gather statistics about how many instances
of particular circumstances occur in a test run, since only some kinds of expression are
present. For example, from the profile above we might conclude that more test cases
are required to ensure that every possible kind of constant expression is tested. If the
language supports type definitions other than type aliases, record, and array types, we
should add tests for the other cases, since they are missing from the profile.

A dependency profile can be used with node location profiles (Section 4.3) to sum-
marise the pattern of dependence of an attribute with a view to simplifying that at-
tribute’s equations. For example, suppose we find that an attribute only depends on

2 Another dependencies dimension considers all transitive dependencies and generates visu-
alisations for display by GraphViz.

3 depends-on profiles can also indicate references to the parent node, to children nodes, or to
the next or previous nodes in a sequence.
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itself at its parent node or on nothing at the root. This pattern of dependence is common
and can be abstracted out using an attribute decorator [14]. A down decorator takes care
of the transport of the attribute value down the tree from the root to where it is needed.
The developer need only explicitly state the computation that should happen at the root.
Thus, profiling can assist with refactoring of attribute grammars into simpler forms.

5 Discussion and Related Work

The vast majority of previous work in the profiling area has been concentrated on execu-
tion profiles for programs, inspired by systems that include the seminal gprof tool [6].
From the perspective of our work, gprof and descendant tools collect events that cor-
respond to function calls. The call graph of the program corresponds to our descendant
relationship between profile records. Our profile reports are inspired by those of gprof.
We also distinguish between the time taken by an evaluation and those that it uses, as
gprof distinguishes between the time taken by a the caller and the callees.

Our approach is more general, since gprof and similar tools solely use the function
dimension, whereas we show the utility of domain-specific and derived dimensions to
provide different views of the execution. gprof focuses on execution time and function
call counts so issues of efficiency are paramount. In contrast, our flexible dimension-
based approach means that the values themselves are often more important than times.

Abstraction in profiling systems. Instead of profiling at the function level, our
approach raises the level of abstraction. Abstraction increases the generality of the pro-
filing system and significantly reduces the size of the collected data compared to in-
struction and function-level profilers.

Sansom and Peyton Jones describe a profiler for higher-order functional languages
including Haskell [20]. The execution of higher-order programs, particularly lazy ones,
is not obvious since the compilation process is non-trivial and execution order often
does not correspond clearly to the source code. They allow developers to add “cost
centres” that aggregate data in a program-specific manner. Thus, the source-level profile
data can be lifted to a higher level. In our case, the data is always at a higher level. Their
cost centres are each associated with source code fragments rather than separated into
Start and Finish events as in our approach. Thus, the identification of an abstracted
piece of program execution is more flexible in our approach because the two events do
not have to be associated with the same source code.

Nguyen et al. describe a domain-specific language for automating the regulation
of profile data collection, processing and feedback [17]. The language allows some
abstraction away from the details of the profile exploration process. However, it is dif-
ferent from our work in that it operates at a low level and is intended for analysing
performance of programs and system kernels in a similar fashion to gprof.

Rajagoplan et al. consider profiling for event-based programs such as graphical
user interfaces [19]. Events in their work are intrinsic to the functioning of the system,
whereas in our work they are solely part of the profiling system. They look for patterns
in the events which allows them to abstract away from the execution somewhat, but they
do not consider a general abstraction mechanism.
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Systems such as DTrace [16], the Linux Trace Toolkit [29] and the Java Virtual Ma-
chine Tool Interface can be used to collect a large amount of trace data about program
execution. Some customisation of the data collection is usually possible. For example,
DTrace allows the developer to write custom probes that are inserted and executed ef-
ficiently by the infrastructure. A general event tracing mechanism of this kind could
be used to collect data about attribute evaluation. However, these approaches are quite
heavyweight and have a great deal of machine or system dependence to achieve effi-
ciency. Our work shows that a lightweight, simple approach is sufficient for monitoring
the execution of language processors.

Bergel et al. describe a model-based domain-specific profiling approach [1]. Instru-
mentation code augments domain model code via an existing event mechanism or by
using the host language’s reflection framework. Custom profilers use the information
gathered to display profiles and visualisations that relate directly to domain data and
operations. The reliance on meta-programming features of the framework distinguishes
their approach from ours. We pay the price of having to instrument the attribute gram-
mar library code by hand, but as a result we make no demands on the underlying run-
time. Our profile library is independent of any particular domain and the reports have a
generic format, whereas their profilers are deliberately tailored to particular model code
and particular kinds of observations that they want to make.

Profiling attribute grammars. Saraiva and colleagues have investigated the effi-
ciency of attribute grammar evaluation approaches, notably as part of work to improve
the efficiency of evaluators that are constructed as circular programs [5]. Their exper-
iments focused on course-grained measures such as heap usage, rather than the kind
of fine-grained analysis considered in this paper. In earlier work, Saraiva compared the
performance of functional attribute evaluators [21]. He examined properties such as
hash table size, cache misses and the number of equality tests performed between terms
for both full and incremental evaluation of attributes. Some of these measures have
analogues in our approach. The implementation appears to be custom to the particular
experiment rather than a general facility as in our library.

Söderberg and Hedin show how attribute profiles can be used to analyse caching be-
haviour in JastAdd [25]. They calculate an attribute instance graph that is an attribute
dependence graph with evaluation counts on the edges. Edges labelled with counts
greater than one point to attributes for which caching might be advantageous. Their
attribute dependence graph is similar to our collection of profile records and depen-
dency relationships, except that our records are independent of the attribute evaluation
domain. Our use of arbitrary dimensions to extend the power of profiles goes beyond
the aim of Söderberg and Hedin’s work which was to look solely at caching issues.

We developed the Noosa execution monitoring system for the Eli system, including
the attribute grammar component [22]. Noosa is a debugging system, not a profiler, but
it also uses an event-based approach to record information about the execution of a pro-
gram. Noosa doesn’t group events in the same way as the Kiama profiler, since it uses
events primarily to specify domain-specific breakpoints. The focus is on controlling the
execution as it happens rather than on summarising it after it is done. Noosa can be used
to examine the values of attributes of interest with reference to the abstract syntax tree,
but it cannot be used to summarise the execution along other dimensions.
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6 Conclusion and Future Work

We have described a new general approach to domain-specific profiling and its appli-
cation to profiling dynamically-scheduled attribute grammar evaluators. The approach
is easy to implement and its execution overhead is low enough for interactive use. We
have described applications of the profiler to attribute grammar understanding, test case
coverage, and refactoring.

Our current implementation does not handle Kiama’s circular attributes that are
evaluated until they reach a fixed point. We plan to add support for circular attributes
as we have described for regular and parameterised ones. We will also add dimensions
that enable the operation of the fixed point computation to be examined. For example,
a useful dimension would be the number of times that a circular attribute had to be
evaluated before it reached a fixed point. It would also be useful to be able to distinguish
the run-time devoted to each iteration in the computation of a circular attribute.

One direction of future work will be to deploy the profiler for use in other attribute
grammar systems. The approach used with Kiama should easily transfer to other sys-
tems based on dynamic scheduling, but minor modifications should allow it to be used
with other evaluation approaches. For example, a statically-scheduled tree walking at-
tribute evaluator could be instrumented automatically by the scheduler. There might be
scope to add new dimensions, such as one that captures information about node visits.

We also plan to use our framework to investigate applications of profiling other
aspects of language processing. A student is also working on a user interface for inter-
active and graphical access to the profiling data.
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9. Görel Hedin and Eva Magnusson. JastAdd: an aspect-oriented compiler construction system.
Science of Computer Programming, 47(1):37–58, 2003.

10. Martin Jourdan. An optimal-time recursive evaluator for attribute grammars. In Proceedings
of the International Symposium on Programming, pages 167–178. Springer, 1984.

11. Muhammad Karim and Conor Ryan. A new approach to solving 0-1 multiconstraint knap-
sack problems using attribute grammar with lookahead. In Genetic Programming, volume
6621 of Lecture Notes in Computer Science, pages 250–261. Springer, 2011.

12. Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229–256, 1980.
13. Uwe Kastens and William M. Waite. Modularity and reusability in attribute grammars. Acta

Informatica, 31:601–627, 1994.
14. Lennart Kats, Anthony M. Sloane, and Eelco Visser. Decorated attribute grammars: Attribute

evaluation meets strategic programming. In Proceedings of the International Conference on
Compiler Construction, number 5501 in Lecture Notes in Computer Science, pages 142–157.
Springer, 2009.
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