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Abstract
Embedding domain-specific languages (DSLs) in general-
purpose programming languages offers a simpler path to im-
plementation than developing standalone DSL processors.
However, sacrifices must be made, particularly in formal
analysis of DSL programs. This paper explores these trade-
offs in the context of the Kiama project that is investigat-
ing embedding of language processing DSLs in the Scala
language. Examples are presented from preliminary exper-
iments with embedding packrat parsing and strategy-based
term rewriting. Particular attention is paid to the novel fea-
tures of Scala that assist with this effort, including case
classes, implicit conversions, and advanced support for pat-
tern matching.

1. Introduction
Developers of language processing systems such as compil-
ers, static analysers and software transformation systems are
faced with two main implementation methods. On the one
hand, they can employ a generative approach and compile
specifications of the processing into code. On the other hand,
they can embed their specifications in an existing host pro-
gramming language and use the facilities of that language
to obtain an implementation. A hybrid approach is also pos-
sible, where generators are used to extend an existing lan-
guage, resulting in a flexible form of embedding or a staged
implementation.

When these approaches are compared, there is no clear
winner. A generative approach is the most flexible since ev-
ery detail can be controlled, whereas an embedding approach
must live with the syntax and semantics of the host language.
However, building a generator is more work than reusing an
existing language implementation.

A traditional argument for generators is that the user does
not have to learn a programming language, making the ap-
proach suitable for non-programmers who are familiar with
the problem domain. However, for language processing sys-
tems the target audience is most likely software developers
and tool builders. For these users, learning a generator and
its input notation is often a disincentive. Thus, embedding is

a more attractive approach in this domain than in domains
where non-programmers are the end users.

The landscape is changing continuously on both sides
of this equation. New meta-tools are being developed to
make it easier to implement language processing tools. The
capabilities of potential host languages are always being
extended and new languages are being developed, many with
features designed to support embedding.

Kiama
Kiama is a new project that is investigating the embedding
side of this debate. Motivation comes from experience build-
ing generators for language specifications in the Eli sys-
tem [11]. The resulting generators satisfied their goals, but
in many cases the specification languages were ad hoc and
lacked features that are commonplace in general purpose
languages such as support for proper parameterisation, mod-
ularisation and extensibility. As language processing sys-
tems are used to tackle larger problems and different tech-
niques are combined, support for these kinds of structuring
mechanisms becomes increasingly important.

The Kiama thesis is that in the language processing do-
main it is better to start with a modern general purpose lan-
guage that embodies prevailing wisdom about how to struc-
ture, scale and extend applications, than to expect every
generator builder to incorporate this wisdom into their own
tools. The initial aim of Kiama is to combine many proven
language processing methods into a coherent whole, sup-
ported by general facilities from a host language.

Kiama is hosted by the Scala programming language
that provides both object-oriented and functional features in
a statically-typed combination running on the Java Virtual
Machine [21, 22]. Thus, Scala constitutes a powerful base on
which to experiment with embedding. Most previous work
on embedding languages has been conducted in functional
languages such as Haskell or in dynamic languages such
as Ruby or Smalltalk. Operating within the constraints of
a hybrid language such as Scala offers some advantages but
also presents challenges. Exploring these boundaries is an
important component of the Kiama project.

The rest of this paper presents a tour through the major
features of Kiama as it currently stands, beginning with pro-



gram representations in abstract syntax and pattern match-
ing. Packrat parser combinators are then described, followed
by processing of programs using strategy-based term rewrit-
ing, and a pointer to current work on attribute grammar-like
facilities. Finally, infrastructure obtained from the host lan-
guage is discussed, particularly for testing. Throughout, the
noteworthy features of Scala are outlined and brief compar-
isons with Haskell are provided, since it is the most widely
used host language for embedding.

2. Abstract syntax and pattern matching
Scala provides case classes to fill the role of algebraic data
types in languages like Haskell and ML. The main differ-
ences between a case class and an ordinary class are a sim-
pler constructor invocation and support for pattern matching.
For example, Figure 1 shows the abstract syntax of a simple
imperative language, encoded in a standard object-oriented
way using case classes.

Trees conforming to this abstract syntax can be created
easily. For example, the while program

{ i = 10; while (i) i = i - 1; }

can be written as

Seqn (List (
Asgn ("i", Num (10)),
While (Var ("i"),
Asgn ("i", Sub (Var ("i"), Num (1))))))

Apart from simplified construction, case classes can also
be used in pattern matching. For example, the following code
fragment matches against an expression e to compute its
value, if possible.

e match {
case Num (i) => i
case Add (Num (i), Num (j)) => i + j
case Sub (Num (i), Num (j)) => ...

}

The case class style of Scala is more verbose than the
Haskell equivalent, but integrates nicely with the rest of the
language. Generalised algebraic data types can be achieved
using parameterised types. Case classes can have additional
fields and members so their basic functionality can be ex-
tended in ways that Haskell data types cannot. Value con-
struction and pattern matching are very similar to Haskell.
Case classes automatically get default support for pretty-
printing as data types do in Haskell but case classes also get
binary serialisation.

3. Parser combinators
Parser combinators have a long history, particularly in func-
tional programming languages (see, for example, [8, 9,
16, 24]). Kiama has a parsing library based around pars-
ing expression grammars (PEGs) and the associated packrat

parsing method [4, 5, 6]. PEGs are similar to context-free
grammars but have an ordered choice operator and semantic
predicates. Nevertheless, they remain closed under composi-
tion which is useful for language extension and combination
tasks. Packrat parsing is a linear time recognition method, al-
beit with non-trivial space usage due to memoisation. Kiama
supports arbitrary left recursion using the algorithms used to
implement the OMeta language [27, 28].

The Kiama parser combinator notation is based on PEGs
but, for compatibility, also on the standard Scala parser com-
binator library, that follows a more traditional backtrack-
ing combinator parsing approach [18]. For example, Fig-
ure 2 shows a Kiama parser for the simple imperative lan-
guage and summarises the combinators used. Some of them
are straight-forward functions that combine parsers. Others,
such as the Kleene star and plus are methods on Parser class.
Scala helps here by permitting operator characters to be used
as method names and by allowing the “.” for method invoca-
tion to be omitted, so that stmt* stands for stmt.*.

Lazy values are used so that the order of definition does
not matter. Types are inferred except for recursive produc-
tions and are provided by the user when memoisation is re-
quired (for example, for exp, term and factor). Strings
are implicitly converted to parsers by the library function
literal a call to which is inserted by the compiler where
necessary.

implicit def literal
(s : String) : Parser[String] = ...

Semantic actions are incorporated using the ^^ combi-
nator. For example, the following production builds a tree
fragment for a while statement.

lazy val whileStmt =
("while" ~> "(" ~> exp <~ ")") ~ stmt ^^
{ case e ~ b => While (e, b) }

The semantic action is written as an anonymous pattern
matching function that deconstructs the pair returned by the
parser and constructs the abstract syntax tree node.

From the user’s perspective, Kiama’s parsing library is
very similar to those in other languages and to Scala’s stan-
dard library. The main difference is the ability to use left
recursion, leading to more natural grammars. Implicit con-
versions to parsers play a similar role to the type classes in
a Haskell parser library, but in a more disciplined way since
they are properly scoped. From an implementor’s perspec-
tive, the library was straight-forward to get running, because
the published imperative packrat algorithms can be coded al-
most directly in Scala. The syntactic rules for method calls
mean that an object-oriented design can be maintained but
a simpler syntax used in calls, approximating the clean syn-
tax of Haskell. In fact, even prefix methods can be defined,
allowing !x to be used instead of not(x), for example.

Combining parsers with Scala’s implicit conversions pro-
vide a dynamic version of concrete syntax support. For ex-



abstract class Stmt
case class Null extends Stmt
case class Seqn (ss : Seq[Stmt]) extends Stmt
case class Asgn (s : String, e : Exp) extends Stmt
case class While (e : Exp, b : Stmt) extends Stmt

abstract class Exp
case class Var (s : String) extends Exp
case class Neg (e : Exp) extends Exp
case class Add (l : Exp, r : Exp) extends Exp
case class Sub (l : Exp, r : Exp) extends Exp
case class Mul (l : Exp, r : Exp) extends Exp
case class Div (l : Exp, r : Exp) extends Exp

Figure 1. Abstract syntax for a simple imperative language.

lazy val stmt : Parser[Stmt] = ";" | sequence | asgnStmt | whileStmt
lazy val sequence = "{" ~> (stmt*) <~ "}"
lazy val asgnStmt = idn ~ ("=" ~> exp) <~ ";"
lazy val whileStmt = ("while" ~> "(" ~> exp <~ ")") ~ stmt
lazy val keyword : Parser[String] = "while"

lazy val exp : MemoParser[Exp] = exp ~ ("+" ~> term) | exp ~ ("-" ~> term) | term
lazy val term : MemoParser[Exp] = term ~ ("*" ~> factor) | term ~ ("/" ~> factor) | factor
lazy val factor : MemoParser[Exp] = double | integer | variable | "-" ~> exp | "(" ~> exp <~ ")"

lazy val integer = token (digit+)
lazy val double = token ((digit+) ~ ("." ~> (digit+)))
lazy val variable = idn
lazy val idn = not (keyword) ~> token (letter ~ (letterOrDigit*)) { case c ~ cs => c + cs.mkString }

Combinator Meaning
x | y Try to recognise an x and if that fails, try a y.
x ~ y Parse an x then a y, returning the paired result of both parses, if both succeed.
x ~> y Parse an x then a y, returning the result of the y parse, if both succeed.
x <~ y Parse an x then a y, returning the result of the x parse, if both succeed.
x* Parse zero or more copies of whatever x parses.
x+ Parse one or more copies of whatever x parses.
token (x) Recognise what x does, preceded by optional layout (e.g., whitespace).
not (x) Succeed if x fails at the current position, otherwise fail. Has no effect on the input.

Figure 2. A Kiama parser for the simple imperative language (semantic actions omitted) and the relevant parsing combinators.

ample, an implicit function can be used to automatically
parse a literal string when a syntax tree is required.

implicit def strToExp (s : String) : Exp =
... run exp parser on s ...

val e : Exp = "1 + 3 * 4"

Parsers can also be incorporated into pattern matching via
Scala’s extractor patterns. An object can be used in a pattern
match and its unapply method is invoked to perform the
match and bind variables. In this example, the Assign ob-

ject provides transparent access to the assignment statement
parser in a pattern matching expression1.

object Assign {
def unapply (s : String) :

Option[(String,Exp)] =
... use asgnStmt parser on s

return Some (i,e) on a successful parse

None on failure ...
}

1 Scala’s Option type is similar to Haskell’s Maybe.



The extractor is used as follows:

str match {
case Assign (id, exp) => ...
...

}

4. Strategy-based term rewriting
Stratego is a successful term rewriting language based
around the concept of generic tree traversals [26]. Its se-
mantics [2] is naturally suited to a combinator-style imple-
mentation where a strategy is implemented as a function
that takes a subject term as argument and returns either a
transformed term or a failure indication. For example, the
following Kiama function defines a simple transformation
of arithmetic expressions.

def simplify : Exp => Exp =
rewrite (everywheretd (rule {

case Sub (x, y) =>
simplify (Add (x, Neg (y)))

case Add (x, y) if x == y =>
Mul (Num (2), x)

}))

The code delimited by the braces denotes a partial func-
tion that performs the transformation on a single expression.
rule transforms this function into a Stratego-style strategy.
everywheretd is a combinator that applies its argument
recursively to every sub-term of the subject term. Finally,
rewrite applies its argument strategy to an expression and,
if it succeeds, returns the resulting expression, otherwise it
returns the original expression.

The Kiama implementation provides a natural definition
of the generic strategy combinators that is very similar to
Stratego’s library definitions. For example, everywheretd
is defined as follows.

def everywheretd (s : => Strategy) : Strategy =
topdown (attempt (s))

def topdown (s : => Strategy) : Strategy =
s <* all (topdown (s))

def attempt (s : => Strategy) : Strategy =
s <+ id

The definition of everywheretd uses a generic topdown
combinator and a combinator attempt that applies its ar-
gument strategy and returns an unchanged term if the argu-
ment fails. <* is the sequence combinator that executes its
right argument only if its left argument succeeds, and <+
is guarded choice that executes its right argument only if
its left argument fails. (id is the identity strategy.) As for
the parsing library, this rewriting library also benefits from
Scala’s syntactic rules since something like s <+ id is ac-
tually s.<+(id).

The Kiama implementation varies from Stratego in a
number of ways. For example, the Stratego semantics ex-

plicitly manipulates an environment for bound variables in
patterns, which Kiama achieves using normal Scala bind-
ings. This design changes the semantics somewhat since in
Stratego it is possible to pass bindings from one strategy to
another in a sequence. In Kiama this is only possible within
a single rule, but this limitation has not been encountered
in testing so far. Also, Stratego’s strategies are not typed,
whereas Kiama can use Scala’s type system to provide lo-
cal checking for rules. Since Kiama strategies can access
any Scala code, computations that don’t fit naturally into
the term rewriting model are easier than in Stratego. For
example, arithmetic in Stratego uses special primitive strate-
gies and context-dependent computations such as scoping
use dynamic rules, both of which can be directly coded in
Kiama rules using standard Scala.

Most of the Stratego syntax carries over to the Scala set-
ting, with sequential combination the most notable excep-
tion since Stratego’s semicolon operator is already used by
Scala’s syntax. Kiama uses call-by-name parameters (indi-
cated by => before the parameter type) to avoid infinite ex-
pansion, which would be trivially dealt with by lazy evalua-
tion in a Haskell implementation. Scala’s anonymous pattern
matching functions make some aspects easier to state than in
a Haskell implementation that would require separate func-
tion definitions.

Kiama’s term rewriting library is clearly similar in many
ways to numerous Haskell rewriting and generic traversal
libraries, including Scrap Your Boilerplate [14, 15] and Uni-
plate [17]. Kiama follows Stratego more closely than these
libraries and currently doesn’t attempt to use the type system
as fully. TOM extends Java and other languages with trans-
formation features based on pattern matching and strate-
gies [1, 19]. When used with Java, TOM has a similar con-
text to Kiama but is a generator not an embedding, so the
emphasis is different.

5. Attribution
Current work on Kiama is investigating analysis of syntax
trees using techniques inspired by attribute grammars. The
approach being used is a dynamically scheduled evaluator in
the style of Jourdan [10] and similar to that used by the Jas-
tAdd generator [7]. Details are currently in flux, preventing
a proper explanation here, but more information should be
available by the workshop.

In recent related work at Delft, Lennart Kats has de-
veloped a method for expressing attribute grammar short-
hand notations using strategic programming [12]. In this ap-
proach, standard attribute grammar equations provide the lo-
cal computations. Non-local accesses and higher-order at-
tribute patterns are achieved using decorators that specify
how to obtain attribute values using a generic traversal of the
tree. Using decorators, mechanisms such as reaching up the
tree or evaluating an attribute until a fixed point is reached
can be expressed in a generic way, rather than being embed-



ded in the attribute grammar system implementation. A trial
of decorators in Kiama is also underway.

6. Infrastructure
As is the case for all embedded languages, Kiama inherits
tool support from its host language. For example, Kiama
programs can be debugged using standard JVM-based de-
buggers such as that provided by Eclipse. For example, it is
straight-forward to place breakpoints inside rewriting strate-
gies and to examine the terms to which they are being ap-
plied. Of course, this method of debugging exposes library
details rather than preserving the DSL interface as DSL-level
debugging support could do.2

More interestingly, testing frameworks for Scala are very
useful in the Kiama setting. For example, the contributed
scalacheck library [20], that provides functionality similar
to that provided by Quickcheck for Haskell, can be used to
write sophisticated tests. For example, the following code
provides round-trip testing of parsing and pretty-printing.

trait PrettyPrintable {
def pretty (o : StringBuilder)

}

def roundtrip[T <: PrettyPrintable]
(parser : Parser[T])
(implicit arbT : Arbitrary[T]) {

check ((t : T) => {
val buffer = new StringBuilder
t.pretty (buffer)
expectBool (parser, buffer.toString, t)

})
}

// Sample invocation
roundtrip (exp)

roundtrip is generic in the type T of the values that
are returned by the parser to be tested. The upper bound
on T ensures that values of that type can be pretty-printed
via the PrettyPrintable trait. The body of roundtrip
uses check from the scalacheck library to test a predicate
on T values. check requires a way to create arbitrary val-
ues of type T. This capability is provided by the parameter
arbT, which if not explicitly given, will be provided implic-
itly from the current scope. In our example, the tests import
Arbitrary[T] values for all types in the imperative lan-
guage abstract syntax. Provided with a test value, the actual
test pretty-prints the value into a buffer, parses it back and
expects that the parsed value is the same as the test value.3

The helper function expectBool hides the details of run-

2 Furthermore, in the current versions of the Eclipse debugging support,
no attempt is made to hide the Scala-to-JVM translation, so some manual
“resugaring” is necessary at that level as well.
3 Of course, this test assumes that pretty-printing is working correctly.

ning the parser, extracting the value from a successful parser
result and so on.

7. Conclusion and Open Questions
Kiama is a young library and has not been tried on very large
problems. Yet, it is clear that the embedding approach is al-
lowing functionality approaching that of generators to be ob-
tained with a relatively small amount of work: around 3000
lines of code, including tests and documentation comments.

Scala has proven to be a convenient host language since it
offers many of the relevant features of languages previously
associated with this kind of library, such as high-level pat-
tern matching in Haskell or ML, but also has an imperative
base, access to lazy evaluation, a more predictable execu-
tion model and access to Java infrastructure. Scala’s scalable
component features [23] are expected to be of increasing im-
portance as larger problems are attempted.

As in any embedding experiment, some syntactic conces-
sions have been made, but so far at least, these have not been
onerous. Potentially more problematic are correctness con-
cerns. A true embedding approach doesn’t support analysis
of DSL programs beyond that provided by the host language.
Embedding therefore encourages a design that uses the host
language for static checking of syntax, names and types but
does not require more extensive correctness analysis of DSL
programs. For example, using a technique for packrat pars-
ing that supports left recursion means that Kiama does not
need to check for it. Similarly, Stratego’s semantics means
that once a strategy has been created, it can be run without
requiring any further static checking. It is an open question
whether DSLs of this kind exist for all of the language pro-
cessing tasks that one would wish to do.

A bigger question relates to the guarantees that can be
made about the execution of a DSL program. Since DSLs
such as the Stratego embedding in Kiama give full access to
Scala, there is significant potential for incorrect execution.
For example, a rule could cause a non-local control flow via
an exception thereby breaking a rewrite traversal that is in
progress. Current work is investigating ways to capture the
constraints and requirements of DSLs and the host language
so that some checking can be performed.

Beyond the general issues of DSL combination, particular
combinations are also of interest. In particular, Kiama will
provide a base on which to experiment with interactions be-
tween rewriting and attribution. JastAdd provides one form
of combination where rewrites can be triggered by attribute
accesses [3], but there are other possibilities.

Some aspects of Scala deserve to be more fully investi-
gated. For example, encapsulation of parsing, rewriting or
analysis within extractor patterns can provide significant ab-
straction, but more use cases need to be considered to see
if this is really useful. Scala’s type system needs to be ex-
plored more fully to give types to strategies, perhaps along
the line of Lämmel’s work [13]. As shown earlier, a limited



form of dynamic concrete syntax for languages can be sup-
ported by invoking parsers from implicit string conversion,
but this does not currently carry across to pattern matching
in the sense of systems like Stratego and ASF+SDF[25].
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